Все формулы импульса по физике. Referat

Законы Ньютона позволяют решать различные практически важные задачи, касающиеся взаимодействия и движения тел. Большое число таких задач связано, например, с нахождением ускорения движущегося тела, если известны все действующие на это тело силы. А затем по ускорению определяют и другие величины (мгновенную скорость, перемещение и др.).

Но часто бывает очень сложно определить действующие на тело силы. Поэтому для решения многих задач используют ещё одну важнейшую физическую величину - импульс тела.

  • Импульсом тела р называется векторная физическая величина, равная произведению массы тела на его скорость

Импульс - векторная величина. Направление вектора импульса тела всегда совпадает с направлением вектора скорости движения.

За единицу импульса в СИ принимают импульс тела массой 1 кг, движущегося со скоростью 1 м/с. Значит, единицей импульса тела в СИ является 1 кг м/с.

При расчётах пользуются уравнением для проекций векторов: р х = mv x .

В зависимости от направления вектора скорости по отношению к выбранной оси X проекция вектора импульса может быть как положительной, так и отрицательной.

Слово «импульс» (impulsus) в переводе с латинского означает «толчок». В некоторых книгах вместо термина «импульс» используется термин «количество движения».

Эта величина была введена в науку примерно в тот же период времени, когда Ньютоном были открыты законы, названные впоследствии его именем (т. е. в конце XVII в.).

При взаимодействии тел их импульсы могут изменяться. В этом можно убедиться на простом опыте.

Два шарика одинаковой массы подвешивают на нитяных петлях к укреплённой на кольце штатива деревянной линейке, как показано на рисунке 44, а.

Рис. 44. Демонстрация закона сохранения импульса

Шарик 2 отклоняют от вертикали на угол а (рис. 44, б) и отпускают. Вернувшись в прежнее положение, он ударяет по шарику 1 и останавливается. При этом шарик 1 приходит в движение и отклоняется на тот же угол а (рис. 44, в).

В данном случае очевидно, что в результате взаимодействия шаров импульс каждого из них изменился: на сколько уменьшился импульс шара 2, на столько же увеличился импульс шара 1.

Если два или несколько тел взаимодействуют только между собой (т. е. не подвергаются воздействию внешних сил), то эти тела образуют замкнутую систему.

Импульс каждого из тел, входящих в замкнутую систему, может меняться в результате их взаимодействия друг с другом. Но

  • векторная сумма импульсов тел, составляющих замкнутую систему, не меняется с течением времени при любых движениях и взаимодействиях этих тел

В этом заключается закон сохранения импульса.

Закон сохранения импульса выполняется и в том случае, если на тела системы действуют внешние силы, векторная сумма которых равна нулю. Покажем это, воспользовавшись для вывода закона сохранения импульса вторым и третьим законами Ньютона. Для простоты рассмотрим систему, состоящую только из двух тел - шаров массами m 1 и m 2 , которые движутся прямолинейно навстречу друг другу со скоростями v 1 и v 2 (рис. 45).

Рис. 45. Система из двух тел - шаров, движущихся прямолинейно навстречу друг другу

Силы тяжести, действующие на каждый из шаров, уравновешиваются силами упругости поверхности, по которой они катятся. Значит, действие этих сил можно не учитывать. Силы сопротивления движению в данном случае малы, поэтому их влияние мы тоже не будем учитывать. Таким образом, можно считать, что шары взаимодействуют только друг с другом.

Из рисунка 45 видно, что через некоторое время шары столкнутся. Во время столкновения, длящегося в течение очень короткого промежутка времени t, возникнут силы взаимодействия F 1 и F 2 , приложенные соответственно к первому и второму шару. В результате действия сил скорости шаров изменятся. Обозначим скорости шаров после соударения буквами v 1 и v 2 .

В соответствии с третьим законом Ньютона силы взаимодействия шаров равны по модулю и направлены в противоположные стороны:

По второму закону Ньютона каждую из этих сил можно заменить произведением массы и ускорения, полученного каждым из шаров при взаимодействии:

m 1 а 1 = -m 2 а 2 .

Ускорения, как вы знаете, определяются из равенств:

Заменив в уравнении для сил ускорения соответствующими выражениями, получим:

В результате сокращения обеих частей равенства на t получим:

m1(v" 1 - v 1) = -m 2 (v" 2 - v 2).

Сгруппируем члены этого уравнения следующим образом:

m 1 v 1 " + m 2 v 2 " = m 1 v 1 = m 2 v 2 . (1)

Учитывая, что mv = p, запишем уравнение (1) в таком виде:

P" 1 + Р" 2 = P 1 + Р 2 .(2)

Левые части уравнений (1) и (2) представляют собой суммарный импульс шаров после их взаимодействия, а правые - суммарный импульс до взаимодействия.

Значит, несмотря на то, что импульс каждого из шаров при взаимодействии изменился, векторная сумма их импульсов после взаимодействия осталась такой же, как и до взаимодействия.

Уравнения (1) и (2) являются математической записью закона сохранения импульса.

Поскольку в данном курсе рассматриваются только взаимодействия тел, движущихся вдоль одной прямой, то для записи закона сохранения импульса в скалярной форме достаточно одного уравнения, в которое входят проекции векторных величин на ось X:

m 1 v" 1x + m 2 v" 2х = m 1 v 1x + m 2 v 2x .

Вопросы

  1. Что называют импульсом тела?
  2. Что можно сказать о направлениях векторов импульса и скорости движущегося тела?
  3. Расскажите о ходе опыта, изображённого на рисунке 44. О чём он свидетельствует?
  4. Что означает утверждение о том, что несколько тел образуют замкнутую систему?
  5. Сформулируйте закон сохранения импульса.
  6. Для замкнутой системы, состоящей из двух тел, запишите закон сохранения импульса в виде уравнения, в которое входили бы массы и скорости этих тел. Поясните, что означает каждый символ в этом уравнении.

Упражнение 20

  1. Две игрушечные заводные машины, массой по 0,2 кг каждая, движутся прямолинейно навстречу друг другу. Скорость каждой машины относительно земли равна 0,1 м/с. Равны ли векторы импульсов машин; модули векторов импульсов? Определите проекцию импульса каждой из машин на ось X, параллельную их траектории.
  2. На сколько изменится (по модулю) импульс автомобиля массой 1 т при изменении его скорости от 54 до 72 км/ч?
  3. Человек сидит в лодке, покоящейся на поверхности озера. В какой-то момент он встаёт и идёт с кормы на нос. Что произойдёт при этом с лодкой? Объясните явление на основе закона сохранения импульса.
  4. Железнодорожный вагон массой 35 т подъезжает к стоящему на том же пути неподвижному вагону массой 28 т и автоматически сцепляется с ним. После сцепки вагоны движутся прямолинейно со скоростью 0,5 м/с. Какова была скорость вагона массой 35 т перед сцепкой?

ИМПУЛЬС ТЕЛА

Импульс тела - это физическая векторная величина, равная произведению массы тела на его скорость.

Вектор импульса тела направлен так же как и вектор скорости этого тела.

Под импульсом системы тел понимают сумму импульсов всех тел этой системы: ∑p=p 1 +p 2 +... . Закон сохранения импульса: в замкнутой системе тел при любых процессах ее импульс остается неизменным, т.е. ∑p = const.

(Замкнутой называется система тел, взаимодействующих только друг с другом и не взаимодействующих с другими телами.)

Вопрос2. Термодинамическое и статистическое определение энтропии. Второе начало термодинамики.

Термодинамическое определение энтропии

Понятие энтропии было впервые введено в 1865 году Рудольфом Клаузиусом. Он определил изменение энтропии термодинамической системы при обратимом процессе как отношение изменения общегоколичества тепла к величинеабсолютной температуры :

Эта формула применима только для изотермического процесса (происходящего при постоянной температуре). Её обобщение на случай произвольного квазистатического процесса выглядит так:

где - приращение (дифференциал) энтропии, а- бесконечно малое приращение количества теплоты.

Необходимо обратить внимание на то, что рассматриваемое термодинамическое определение применимо только к квазистатическим процессам (состоящим из непрерывно следующих друг за другом состояний равновесия).

Статистическое определение энтропии: принцип Больцмана

В 1877 году Людвиг Больцман нашёл, что энтропия системы может относиться к количеству возможных «микросостояний» (микроскопических состояний), согласующихся с их термодинамическими свойствами. Рассмотрим, например, идеальный газ в сосуде. Микросостояние определено как позиции и импульсы (моменты движения) каждого составляющего систему атома. Связность предъявляет к нам требования рассматривать только те микросостояния, для которых: (I) месторасположения всех частей расположены в рамках сосуда, (II) для получения общей энергии газа кинетические энергии атомов суммируются. Больцман постулировал, что:

где константу 1,38 · 10 −23 Дж/К мы знаем теперь как постоянную Больцмана, а является числом микросостояний, которые возможны в имеющемся макроскопическом состоянии (статистический вес состояния).

Второе начало термодинамики - физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.

Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.

Билет 6.

  1. § 2.5. Теорема о движении центра масс

Соотношение (16) очень похоже на уравнение движения мате­риальной точки. Попробуем привести его к еще более простому виду F =ma . Для этого преобразуем левую часть, воспользовавшись свой­ствами операции дифференцирования (y+z) =­y +z , (ay) =ay , a=const:

(24)

Домножим и разделим (24) на массу всей системы и под­ставим в уравнение (16):

. (25)

Выражение, стоящее в скобках, имеет размерность длины и оп­ределяет радиус-вектор некоторой точки, которая называетсяцентром масс системы:

. (26)

В проекциях на оси координат (26) примет вид

(27)

Если (26) подставить в (25), то получим теорему о движении центра масс:

т.е. центр масс системы движется, как материальная точка, в которой сосредоточена вся масса системы, под действием суммы внешних сил, приложенных к системе. Теорема о движении центра масс утверждает, что какими бы сложными ни были силы вза­имодействия частиц системы друг с другом и с внешними телами и как бы сложно эти частицы ни двигались, всегда можно найти точку (центр масс), движение которой описывается просто. Центр масс некая геометрическая точка, положение которой определяется распре­делением масс в системе и которая может не совпадать ни с одной из ее материальных частиц.

Произведение массы системы на скорость v ц.м ее центра масс, как это следует из его определения (26), равно импульсу системы:

(29)

В частности, если сумма внешних сил равна нулю, то центр масс движется равномерно и прямолинейно или покоится.

Пример 1. В некоторой точке траектории снаряд разрывается на множество осколков (рис. 9). Как будет двигаться их центр масс?

Центр масс "полетит" по той же параболической траектории, по которой дви­гался бы неразорвавшийся снаряд: его ускорение в соот­ветствии с (28) определяется суммой всех сил тяжести, приложенных к ос­колкам, и общей их массой, т.е. тем же уравне­ни­ем, что и движение целого снаряда. Однако, как только первый оско­лок ударится о Землю, к внешним силам силам тяжести доба­вится сила реакции Земли и движение центра масс исказится.

Пример 2. На покоящееся тело начинает действовать "пара" сил F и F (рис. 10). Как будет двигаться тело?

Поскольку геометрическая сумма внешних сил равна нулю, ус­корение центра масс также равно нулю и он останется в покое. Тело будет вращаться вокруг неподвижного центра масс.

Есть ли какие-либо преимущества у закона сохранения импульса перед законами Ньютона? В чем сила этого закона?

Главное его достоинство в том, что он но­сит интегральный характер, т.е. связывает харак­теристики системы (ее импульс) в двух состоя­ниях, разделенных конечным проме­жутком вре­мени. Это позволяет получить важные сведения сразу о конечном со­стоянии системы, минуя рассмотрение всех промежуточных ее состо­яний и деталей происходящих при этом взаимодействий.

2) Скорости молекул газа имеют различные значения и направления, причем из-за огромного числа соударений, которые ежесекундно испытывает молекула, скорость ее постоянно изменяеться. Поэтому нельзя определить число молекул, которые обладают точно заданной скоростью v в данный момент времени, но можно подсчитать число молекул, скорости которых имеют значение, лежащие между некоторыми скоростями v 1 и v 2 . На основании теории вероятности Максвелл установил закономерность, по которой можно определить число молекул газа, скорости которых при данной температуре заключены в некотором интервале скоростей. Согласно распределению Максвелла, вероятное число молекул в единице объема; компоненты скоростей которых лежат в интервале от до, отдои отдо, определяются функцией распределения Максвелла

где m - масса молекулы, n - число молекул в единице объема. Отсюда следует, чтсг число молекул, абсолютные значения скоростей которых лежат в интервале от v до v + dv, имеет вид

Распределение Максвелла достигает максимума при скорости , т.е. такой скорсти, к которой близки скорости большинства молекул. Площадь заштрихованной полоски с основанием dV покажет, какая часть от общего числа молекул имеет скорости, лежащие в данном интервале. Конкретный вид функции распределения Максвелла зависит от рода газа (массы молекулы) и температуры. Давление и объем газа на распределение молекул по скоростям не влияет.

Кривая распределения Максвелла позволит найти среднюю арифметическую скорость

Таким образом,

С Повышением температуры наиболее вероятная скорость возрастает, поэтому максимум распределения молекул по скоростям сдвигается в сторону больших скоростей, а его абсолютная величина уменьшается. Следовательно, при нагревании газа доля молекул, обладающих малыми скоростями уменьшается, а доля молекул с большими скоростями увеличивается.

Распределение Больцмана

Это распределение по энергиям частиц (атомов, молекул) идеального газа в условиях термодинамического равновесия. Распределение Больцмана было открыто в 1868 - 1871 гг. австралийским физиком Л. Больцманом. Согласно распределению, число частиц n i с полной энергией E i равно:

n i =A ω i e ­E i /Kt (1)

где ω i - статистический вес (число возможных состояний частицы с энергией e i). Постоянная А находится из условия, что сумма n i по всем возможным значениям i равна заданному полному числу частиц N в системе (условие нормировки):

В случае, когда движение частиц подчиняется классической механике, энергию E i можно считать состоящей из кинетической энергии E iкин частицы (молекулы или атома), её внутренней энергии E iвн (напр., энергии возбуждения электронов) и потенциальной энергии E i , пот во внешнем поле, зависящей от положения частицы в пространстве:

E i = E i, кин + E i, вн + E i, пот (2)

Распределение частиц по скоростям является частным случаем распределения Больцмана. Оно имеет место, когда можно пренебречь внутренней энергией возбуждения

E i,вн и влиянием внешних полей E i,пот. В соответствии с (2) формулу (1) можно представить в виде произведения трёх экспонент, каждая из которых даёт распределение частиц по одному виду энергии.

В постоянном поле тяжести, создающем ускорение g, для частиц атмосферных газов вблизи поверхности Земли (или др. планет) потенциальная энергия пропорциональна их массе m и высоте H над поверхностью, т.е. E i, пот = mgH. После подстановки этого значения в распределение Больцмана и суммирования по всевозможным значениям кинетической и внутренней энергий частиц получается барометрическая формула, выражающая закон уменьшения плотности атмосферы с высотой.

В астрофизике, особенно в теории звёздных спектров, распределение Больцмана часто используется для определения относительной заселённости электронами различных уровней энергии атомов. Если обозначить индексами 1 и 2 два энергетических состояния атома, то из распределения следует:

n 2 /n 1 = (ω 2 /ω 1) e -(E 2 -E 1)/kT (3) (ф-ла Больцмана).

Разность энергий E 2 -E 1 для двух нижних уровней энергии атома водорода >10 эВ, а значение kT, характеризующее энергию теплового движения частиц для атмосфер звёзд типа Солнца, составляет всего лишь 0,3-1 эВ. Поэтому водород в таких звёздных атмосферах находится в невозбуждённом состоянии. Так, в атмосферах звёзд, имеющих эффективную температуру Тэ > 5700 К (Солнце и др. звёзды), отношение чисел атомов водорода во втором и основном состояниях равно 4,2 10 -9 .

Распределение Больцмана было получено в рамках классической статистики. В 1924-26 гг. была создана квантовая статистика. Она привела к открытию распределений Бозе - Эйнштейна (для частиц с целым спином) и Ферми - Дирака (для частиц с полуцелым спином). Оба эти распределения переходят в распределение, когда среднее число доступных для системы квантовых состояний значительно превышает число частиц в системе, т. о. когда на одну частицу приходится много квантовых состояний или, др. словами, когда степень заполнения квантовых состояний мала. Условие применимости распределении Больцмана можно записать в виде неравенства:

где N - число частиц, V - объём системы. Это неравенство выполняется при высокой темп-ре и малом числе частиц в ед. объёма (N/V). Из этого следует, что чем больше масса частиц, тем для более широкого интервала изменений Т и N/V справедливо распределение Больцмана..

билет 7.

Работа всех приложенных сил равна работе равнодействующей силы (см. рис. 1.19.1).

Между изменением скорости тела и работой, совершенной приложенными к телу силами, существует связь. Эту связь проще всего установить, рассматривая движение тела вдоль прямой линии под действием постоянной силы В этом случае векторы силыперемещенияскоростии ускорениянаправлены вдоль одной прямой, и тело совершает прямолинейное равноускоренное движение. Направив координатную ось вдоль прямой движения, можно рассматриватьF , s , υ и a как алгебраические величины (положительные или отрицательные в зависимости от направления соответствующего вектора). Тогда работу силы можно записать какA = Fs . При равноускоренном движении перемещение s выражается формулой

Это выражение показывает, что работа, совершенная силой (или равнодействующей всех сил), связана с изменением квадрата скорости (а не самой скорости).

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела:

Это утверждение называют теоремой о кинетической энергии . Теорема о кинетической энергии справедлива и в общем случае, когда тело движется под действием изменяющейся силы, направление которой не совпадает с направлением перемещения.

Кинетическая энергия – это энергия движения. Кинетическая энергия тела массой m , движущегося со скоростью равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

В физике наряду с кинетической энергией или энергией движения важную роль играет понятие потенциальной энергии или энергии взаимодействия тел .

Потенциальная энергия определяется взаимным положением тел (например, положением тела относительно поверхности Земли). Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения и определяется только начальным и конечным положениями тела . Такие силы называются консервативными .

Работа консервативных сил на замкнутой траектории равна нулю . Это утверждение поясняет рис. 1.19.2.

Свойством консервативности обладают сила тяжести и сила упругости. Для этих сил можно ввести понятие потенциальной энергии.

Если тело перемещается вблизи поверхности Земли, то на него действует постоянная по величине и направлению сила тяжести Работа этой силы зависит только от вертикального перемещения тела. На любом участке пути работу силы тяжести можно записать в проекциях вектора перемещенияна осьOY , направленную вертикально вверх:

Эта работа равна изменению некоторой физической величины mgh , взятому с противоположным знаком. Эту физическую величину называют потенциальной энергией тела в поле силы тяжести

Потенциальная энергия E р зависит от выбора нулевого уровня, т. е. от выбора начала координат оси OY . Физический смысл имеет не сама потенциальная энергия, а ее изменение ΔE р = E р2 – E р1 при перемещении тела из одного положения в другое. Это изменение не зависит от выбора нулевого уровня.

Если рассматривать движение тел в поле тяготения Земли на значительных расстояниях от нее, то при определении потенциальной энергии необходимо принимать во внимание зависимость силы тяготения от расстояния до центра Земли (закон всемирного тяготения ). Для сил всемирного тяготения потенциальную энергию удобно отсчитывать от бесконечно удаленной точки, т. е. полагать потенциальную энергию тела в бесконечно удаленной точке равной нулю. Формула, выражающая потенциальную энергию тела массой m на расстоянии r от центра Земли, имеет вид (см. §1.24 ):

где M – масса Земли, G – гравитационная постоянная.

Понятие потенциальной энергии можно ввести и для силы упругости. Эта сила также обладает свойством консервативности. Растягивая (или сжимая) пружину, мы можем делать это различными способами.

Можно просто удлинить пружину на величину x , или сначала удлинить ее на 2x , а затем уменьшить удлинение до значения x и т. д. Во всех этих случаях сила упругости совершает одну и ту же работу, которая зависит только от удлинения пружины x в конечном состоянии, если первоначально пружина была недеформирована. Эта работа равна работе внешней силы A , взятой с противоположным знаком (см. §1.18 ):

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.

Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x 1 , тогда при переходе в новое состояние с удлинением x 2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком:

Во многих случаях удобно использовать молярную теплоемкость C:

где M – молярная масса вещества.

Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.

Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: C V – молярная теплоемкость в изохорном процессе (V = const) и C p – молярная теплоемкость в изобарном процессе (p = const).

В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует

где ΔV – изменение объема 1 моля идеального газа при изменении его температуры на ΔT. Отсюда следует:

где R – универсальная газовая постоянная. При p = const

Таким образом, соотношение, выражающее связь между молярными теплоемкостями C p и C V , имеет вид (формула Майера):

Молярная теплоемкость C p газа в процессе с постоянным давлением всегда больше молярной теплоемкости C V в процессе с постоянным объемом (рис. 3.10.1).

В частности, это отношение входит в формулу для адиабатического процесса (см. §3.9).

Между двумя изотермами с температурами T 1 и T 2 на диаграмме (p, V) возможны различные пути перехода. Поскольку для всех таких переходов изменение температуры ΔT = T 2 – T 1 одинаково, следовательно, одинаково изменение ΔUвнутренней энергии. Однако, совершенные при этом работы A и полученные в результате теплообмена количества теплоты Q окажутся различными для разных путей перехода. Отсюда следует, что у газа имеется бесчисленное количество теплоемкостей. C p и C V – это лишь частные (и очень важные для теории газов) значения теплоемкостей.

Билет 8.

1 Конечно, положение одной, даже «особой», точки далеко не полностью описывает движение всей рассматриваемой системы тел, но все-таки лучше знать положение хотя бы одной точки, чем не знать ничего. Тем не менее рассмотрим применение законов Ньютона к описанию вращения твердого тела вокруг фиксированной оси 1 .  Начнем с простейшего случая: пусть материальная точка массы m прикреплена с помощью невесомого жесткого стержня длиной r к неподвижной оси ОО / (рис. 106).

Материальная точка может двигаться вокруг оси, оставаясь от нее на постоянном расстоянии, следовательно, ее траектория будет являться окружностью с центром на оси вращения. Безусловно, движение точки подчиняется уравнению второго закона Ньютона

Однако непосредственное применение этого уравнения не оправдано: во-первых, точка обладает одной степенью свободы, поэтому в качестве единственной координаты удобно использовать угол поворота, а не две декартовые координаты; во-вторых, на рассматриваемую систему действуют силы реакции в оси вращения, а непосредственно на материальную точку − сила натяжения стержня. Нахождение этих сил представляет собой отдельную проблему, решение которой излишне для описания вращения. Поэтому имеет смысл получить на основании законов Ньютона специальное уравнение, непосредственно описывающее вращательное движение.  Пусть в некоторый момент времени на материальную точку действует некоторая сила F , лежащая в плоскости, перпендикулярной оси вращения (рис. 107).

При кинематическом описании криволинейного движения вектор полного ускорения а удобно разложить на две составляющие − нормальную а n , направленную к оси вращения, и тангенциальную а τ , направленную параллельно вектору скорости. Значение нормального ускорения для определения закона движения нам не нужно. Конечно, это ускорение также обусловлено действующими силами, одна из которых − неизвестная сила натяжения стержня. Запишем уравнение второго закона в проекции на тангенциальное направление:

Заметим, что сила реакции стержня не входит в это уравнение, так как она направлена вдоль стержня и перпендикулярна выбранной проекции. Изменение угла поворота φ непосредственно определяется угловой скоростью

ω = Δφ/Δt ,

изменение которой, в свою очередь, описывается угловым ускорением

ε = Δω/Δt .

Угловое ускорение связано с тангенциальной составляющей ускорения соотношением

а τ = rε .

Если подставим это выражение в уравнение (1), то получим уравнение, пригодное для определения углового ускорения. Удобно ввести новую физическую величину, определяющую взаимодействие тел при их повороте. Для этого умножим обе части уравнения (1) на r :

mr 2 ε = F τ r . (2)

Рассмотрим выражение в его правой части F τ r , имеющее смысл произведения тангенциальной составляющей силы на расстояние от оси вращения до точки приложения силы. Это же произведение можно представить в несколько иной форме (рис. 108):

M = F τ r = Frcosα = Fd ,

здесь d − расстояние от оси вращения до линии действия силы, которое также называют плечом силы.  Эта физическая величина − произведение модуля силы на расстояние от линии действия силы до оси вращения (плечо силы) М = Fd − называется моментом силы. Действие силы может приводить к вращению как по часовой стрелке, так и против часовой стрелки. В соответствии с выбранным положительным направлением вращения следует определять и знак момента силы. Заметьте, что момент силы определяется той составляющей силы, которая перпендикулярна радиус-вектору точки приложения. Составляющая вектора силы, направленная вдоль отрезка, соединяющего точку приложения и ось вращения, не приводит к раскручиванию тела. Эта составляющая при закрепленной оси компенсируется силой реакции в оси, поэтому не влияет на вращение тела.  Запишем еще одно полезное выражения для момента силы. Пусть сила F приложена к точке А , декартовые координаты которой равны х , у (рис. 109).

Разложим силу F на две составляющие F х , F у , параллельные соответствующим осям координат. Момент силы F относительно оси, проходящей через начало координат, очевидно равен сумме моментов составляющих F х , F у , то есть

М = хF у − уF х .

Аналогично, тому, как нами было введено понятие вектора угловой скоро¬сти, можно определить также и понятие вектора момента силы. Модуль этого вектора соответствует данному выше определению, направлен же он перпендикулярно плоскости, содержащей вектор силы и отрезок, соединяющий точку приложения силы с осью вращения (рис. 110).

Вектор момента силы также может быть определен как векторное произведение радиус-вектора точки приложения силы на вектор силы

Заметим, что при смещении точки приложения силы вдоль линии ее действия момент силы не изменяется.  Обозначим произведение массы материальной точки на квадрат расстояния до оси вращения

mr 2 = I

(эта величина называется моментом инерции материальной точки относительно оси). С использованием этих обозначений уравнение (2) приобретает вид, формально совпадающий с уравнением второго закона Ньютона для поступательного движения:

Iε = M . (3)

Это уравнение называется основным уравнением динамики вращательного движения. Итак, момент силы во вращательном движении играет такую же роль, как и сила в поступательном движении, − именно он определяет изменение угловой скорости. Оказывается (и это подтверждает наш повседневный опыт), влияние силы на скорость вращения определяет не только величина силы, но и точка его приложения. Момент инерции определяет инерционные свойства тела по отношению к вращению (говоря простым языком − показывает, легко ли раскрутить тело): чем дальше от оси вращения находится материальная точка, тем труднее привести ее во вращение.  Уравнение (3) допускает обобщение на случай вращения произвольного тела. При вращении тела вокруг фиксированной оси угловые ускорения всех точек тела одинаковы. Поэтому аналогично тому, как мы проделали при выводе уравнения Ньютона для поступательного движения тела, можно записать уравнения (3) для всех точек вращающегося тела и затем их просуммировать. В результате мы получим уравнение, внешне совпадающее с (3), в котором I − момент инерции всего тела, равный сумме моментов составляющих его материальных точек, M − сумма моментов внешних сил, действующих на тело.  Покажем, каким образом вычисляется момент инерции тела. Важно подчеркнуть, что момент инерции тела зависит не только от массы, формы и размеров тела, но и от положения и ориентации оси вращения. Формально процедура расчета сводится к разбиению тела на малые части, которые можно считать материальными точками (рис. 111),

и суммированию моментов инерции этих материальных точек, которые равны произведению массы на квадрат расстояния до оси вращения:

Для тел простой формы такие суммы давно подсчитаны, поэтому часто достаточно вспомнить (или найти в справочнике) соответствующую формулу для нужного момента инерции. В качестве примера: момент инерции кругового однородного цилиндра, массы m и радиуса R , для оси вращения, совпадающей с осью цилиндра равен:

I = (1/2)mR 2 (рис. 112).

В данном случае мы ограничиваемся рассмотрением вращения вокруг фиксированной оси, потому что описание произвольного вращательного движения тела представляет собой сложную математическую проблему, далеко выходящую за рамки курса математики средней школы. Знания же других физических законов, кроме рассматриваемых нами, это описание не требует.

2 Вну́тренняя эне́ргия тела (обозначается как E или U ) - полная энергия этого тела за вычетом кинетической энергии тела как целого и потенциальной энергии тела во внешнем поле сил. Следовательно, внутренняя энергия складывается из кинетической энергии хаотического движения молекул, потенциальной энергии взаимодействия между ними и внутримолекулярной энергии.

Внутренняя энергия тела - энергия движения и взаимодействия частиц, из которых состоит тело.

Внутренняя энергия тела - это суммарная кинетическая энергия движения молекул тела и потенциальная энергия их взаимодействия.

Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности значений в этих состояниях, независимо от пути, по которому совершался переход.

Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:

Для квазистатических процессов выполняется следующее соотношение:

1. Общие сведения Количество теплоты, которое необходимо для нагревания на 1° единицы количества газа, называется теплоемкостью и обозначается буквой с. В технических расчетах теплоемкость измеряют в килоджоулях. При использовании старой системы единиц теплоемкость выражают в килокалориях (ГОСТ 8550-61) *.В зависимости от того, в каких единицах измеряют количество газа различают: мольную теплоемкость \хс в кдж/(кмолъ х X град); массовую теплоемкость с в кдж/(кг-град); объемную теплоемкость с в кдж/(м 3 град). При определении объемной теплоемкости необходимо указывать к каким значениям температуры и давления она относится. Принято определять объемную теплоемкость при нормальных физических условиях.Теплоемкость газов, подчиняющихся законам идеального газа, зависит только от температуры.Различают среднюю и истинную теплоемкость газов. Истинная теплоемкость представляет собой отношение бесконечно малого количества подведенной теплоты Дд при увеличении температуры на бесконечно малую величину At: Средняя теплоемкость определяет среднее количество подведенной теплоты при нагревании единицы количества газа на 1° в интервале температур от t x до t%: где q - количество теплоты, подведенной к единице массы газа при его нагревании от температуры t t до температуры t%. В зависимости от характера протекания процесса, при котором происходит подвод или отвод теплоты, величина теплоемкости газа будет различной.Если газ подогревается в сосуде постоянного объема (V =» = const), то теплота расходуется только на повышение его температуры.Если газ находится в цилиндре с подвижным поршнем, то при подводе теплоты давление газа остается постоянным (р = = const). При этом, подогреваясь, газ расширяется и производит работу против внешних сил при одновременном увеличении его температуры. Для того чтобы разность между конечной и начальной температурами во время нагрева газа в процессе р = const была бы такой же, как и в случае нагрева при V = = const, количество затрачиваемой теплоты должно быть больше на величину, равную совершенной газом работы в процессе р = = const. Из этого следует, что теплоемкость газа при постоянном давлении с р будет больше теплоемкости при постоянном объеме.Второй член в уравнениях характеризует количество теплоты, затрадиваемой на работу газа в процессе р = = const при изменении температуры на 1°.При проведении приближенных расчетов можно принимать, что теплоемкость рабодего тела постоянна и не зависит от температуры. В этом слудае знадения мольных теплоемкостей при постоянном объеме можно принять для одно-, двух- и многоатомных газов соответственно равными 12,6; 20,9 и 29,3 кдж/(кмоль-град) или 3; 5 и 7 ккал/(кмоль-град).

3.2. Импульс

3.2.2. Изменение импульса тела

Для применения законов изменения и сохранения импульса необходимо уметь рассчитывать изменение импульса.

Изменение импульса Δ P → тела определяется формулой

Δ P → = P → 2 − P → 1 ,

где P → 1 = m v → 1 - начальный импульс тела; P → 2 = m v → 2 - его конечный импульс; m - масса тела; v → 1 - начальная скорость тела; v → 2 - его конечная скорость.

Для вычисления изменения импульса тела целесообразно применять следующий алгоритм :

1) выбрать систему координат и найти проекции начального P → 1 и конечного P → 2 импульсов тела на координатные оси:

P 1 x , P 2 x ;

P 1 y , P 2 y ;

∆P x = P 2 x − P 1 x ;

∆P y = P 2 y − P 1 y ;

3) вычислить модуль вектора изменения импульса Δ P → как

Δ P = Δ P x 2 + Δ P y 2 .

Пример 4. Тело падает под углом 30° к вертикали на горизонтальную плоскость. Определить модуль изменения импульса тела за время удара, если к моменту соприкосновения с плоскостью модуль импульса тела равен 15 кг · м/с. Удар тела о плоскость считать абсолютно упругим.

Решение. Тело, падающее на горизонтальную поверхность под некоторым углом α к вертикали и соударяющееся с данной поверхностью абсолютно упруго,

  • во-первых, сохраняет неизменным модуль своей скорости, а значит, и величину импульса:

P 1 = P 2 = P ;

  • во-вторых, отражается от поверхности под тем же углом, под каким падает на нее:

α 1 = α 2 = α,

где P 1 = mv 1 - модуль импульса тела до удара; P 2 = mv 2 - модуль импульса тела после удара; m - масса тела; v 1 - величина скорости тела до удара; v 2 - величина скорости тела после удара; α 1 - угол падения; α 2 - угол отражения.

Указанные импульсы тела, углы и система координат показаны на рисунке.

Для расчета модуля изменения импульса тела воспользуемся алгоритмом :

1) запишем проекции импульсов до удара и после удара тела о поверхность на координатные оси:

P 1 x = mv  sin α, P 2 x = mv  sin α;

P 1 y = −mv  cos α, P 2 y = mv  cos α;

2) найдем проекции изменения импульса на координатные оси по фор­мулам

Δ P x = P 2 x − P 1 x = m v sin α − m v sin α = 0 ;

Δ P y = P 2 y − P 1 y = m v cos α − (− m v cos α) = 2 m v cos α ;

Δ P = (Δ P x) 2 + (Δ P y) 2 = (Δ P y) 2 = | Δ P y | = 2 m v cos α .

Величина P = mv задана в условии задачи; следовательно, вычисление модуля изменения импульса произведем по формуле

Δ P = 2 P cos 30 ° = 2 ⋅ 15 ⋅ 0,5 3 ≈ 26 кг ⋅ м/с.

Пример 5. Камень массой 50 г брошен под углом 45° к горизонту со скоростью 20 м/с. Найти модуль изменения импульса камня за время полета. Сопротивлением воздуха пренебречь.

Решение. Если сопротивление воздуха отсутствует, то тело движется по симметричной параболе; при этом

  • во-первых, вектор скорости в точке падения тела составляет с горизонтом угол β, равный углу α (α - угол между вектором скорости тела в точке бросания и горизонтом):
  • во-вторых, модули скоростей в точке бросания v 0 и в точке падения тела v также одинаковы:

v 0 = v ,

где v 0 - величина скорости тела в точке бросания; v - величина скорости тела в точке падения; α - угол, который составляет вектор скорости с горизонтом в точке бросания тела; β - угол, который составляет с горизонтом вектор скорости в точке падения тела.

Векторы скорости тела (векторы импульса) и углы показаны на рисунке.

Для расчета модуля изменения импульса тела во время полета воспользуемся алгоритмом :

1) запишем проекции импульсов для точки бросания и для точки падения на координатные оси:

P 1 x = mv 0  cos α, P 2 x = mv 0  cos α;

P 1 y = mv 0  sin α, P 2 y = −mv 0  sin α;

2) найдем проекции изменения импульса на координатные оси по формулам

Δ P x = P 2 x − P 1 x = m v 0 cos α − m v 0 cos α = 0 ;

Δ P y = P 2 y − P 1 y = − m v 0 sin α − m v 0 sin α = − 2 m v 0 sin α ;

3) вычислим модуль изменения импульса как

Δ P = (Δ P x) 2 + (Δ P y) 2 = (Δ P y) 2 = | Δ P y | = 2 m v 0 sin α ,

где m - масса тела; v 0 - модуль начальной скорости тела.

Следовательно, вычисление модуля изменения импульса произведем по формуле

Δ P = 2 m v 0 sin 45 ° = 2 ⋅ 50 ⋅ 10 − 3 ⋅ 20 ⋅ 0,5 2 ≈ 1,4 кг ⋅ м/с.

Подробности Категория: Механика Опубликовано 21.04.2014 14:29 Просмотров: 55715

В классической механике существуют два закона сохранения: закон сохранения импульса и закон сохранения энергии .

Импульс тела

Впервые понятие импульса ввёл французский математик, физик, механик и философ Декарт, назвавший импульс количеством движения .

С латинского «импульс» переводится как «толкать, двигать».

Любое тело, которое движется, обладает импульсом.

Представим себе тележку, стоящую неподвижно. Её импульс равен нулю. Но как только тележка начнёт двигаться, её импульс перестанет быть нулевым. Он начнёт изменяться, так как будет изменяться скорость.

Импульс материальной точки, или количество движения, – векторная величина, равная произведению массы точки на её скорость. Направление вектора импульса точки совпадает с направлением вектора скорости.

Если говорят о твёрдом физическом теле, то импульсом такого тела называют произведение массы этого тела на скорость центра масс.

Как вычислить импульс тела? Можно представить, что тело состоит из множества материальных точек, или системы материальных точек.

Если - импульс одной материальной точки, то импульс системы материальных точек

То есть, импульс системы материальных точек – это векторная сумма импульсов всех материальных точек, входящих в систему. Она равна произведению масс этих точек на их скорости.

Единица измерения импульса в международной системе единиц СИ – килограмм-метр в секунду (кг · м/сек).

Импульс силы

В механике существует тесная связь между импульсом тела и силой. Эти две величины связывает величина, которая называется импульсом силы .

Если на тело действует постоянная сила F в течение промежутка времени t , то согласно второму закону Ньютона

Эта формула показывает связь между силой, которая действует на тело, временем действия этой силы и изменением скорости тела.

Величина, равная произведению силы, действующей на тело, на время, в течение которого она действует, называется импульсом силы .

Как мы видим из уравнения, импульс силы равен разности импульсов тела в начальный и конечный момент времени, или изменению импульса за какое-то время.

Второй закон Ньютона в импульсной форме формулируется следующим образом: изменение импульса тела равно импульсу действующей на него силы. Нужно сказать, что сам Ньютон именно так и сформулировал первоначально свой закон.

Импульс силы – это также векторная величина.

Закон сохранения импульса вытекает из третьего закона Ньютона.

Нужно помнить, что этот закон действует только в замкнутой, или изолированной, физической системе. А замкнутой называют такую систему, в которой тела взаимодействуют только между собой и не взаимодействуют с внешними телами.

Представим замкнутую систему из двух физических тел. Силы взаимодействия тел друг с другом называют внутренними силами.

Импульс силы для первого тела равен

Согласно третьему закону Ньютона силы, которые действуют на тела при их взаимодействии, равны по величине и противоположны по направлению.

Следовательно, для второго тела импульс силы равен

Путём простых вычислений получаем математическое выражение закона сохранения импульса:

где m 1 и m 2 – массы тел,

v 1 и v 2 – скорости первого и второго тел до взаимодействия,

v 1 " и v 2 " скорости первого и второго тел после взаимодействия.

p 1 = m 1 · v 1 - импульс первого тела до взаимодействия;

p 2 = m 2 · v 2 - импульс второго тела до взаимодействия;

p 1 "= m 1 · v 1 " - импульс первого тела после взаимодействия;

p 2 "= m 2 · v 2 " - импульс второго тела после взаимодействия;

То есть

p 1 + p 2 = p 1 " + p 2 "

В замкнутой системе тела только обмениваются импульсами. А векторная сумма импульсов этих тел до их взаимодействия равна векторной сумме их импульсов после взаимодействия.

Так, в результате выстрела из ружья импульс самого ружья и импульс пули изменятся. Но сумма импульсов ружья и находящейся в нём пули до выстрела останется равной сумме импульсов ружья и летящей пули после выстрела.

При стрельбе из пушки возникает отдача. Снаряд летит вперёд, а само орудие откатывается назад. Снаряд и пушка – замкнутая система, в которой действует закон сохранения импульса.

Импульс каждого из тел в замкнутой системе может изменяться в результате их взаимодействия друг с другом. Но векторная сумма импульсов тел, входящих в замкнутую систему, не изменяется при взаимодействии этих тел с течением времени, то есть остаётся постоянной величиной. Это и есть закон сохранения импульса .

Более точно закон сохранения импульса формулируется следующим образом: векторная сумма импульсов всех тел замкнутой системы – величина постоянная, если внешние силы, действующие на неё, отсутствуют, или же их векторная сумма равна нулю.

Импульс системы тел может измениться только в результате действия на систему внешних сил. И тогда закон сохранения импульса действовать не будет.

Нужно сказать, что в природе замкнутых систем не существует. Но, если время действия внешних сил очень мало, например, во время взрыва, выстрела и т.п., то в этом случае воздействием внешних сил на систему пренебрегают, а саму систему рассматривают как замкнутую.

Кроме того, если на систему действуют внешние силы, но сумма их проекций на одну из координатных осей равна нулю, (то есть силы уравновешены в направлении этой оси), то в этом направлении закон сохранения импульса выполняется.

Закон сохранения импульса называют также законом сохранения количества движения .

Самый яркий пример применения закона сохранения импульса – реактивное движение.

Реактивное движение

Реактивным движением называют движение тела, которое возникает при отделении от него с определённой скоростью какой-то его части. Само тело получает при этом противоположно направленный импульс.

Самый простой пример реактивного движения – полёт воздушного шарика, из которого выходит воздух. Если мы надуем шарик и отпустим его, он начнёт лететь в сторону, противоположную движению выходящего из него воздуха.

Пример реактивного движения в природе – выброс жидкости из плода бешеного огурца, когда он лопается. При этом сам огурец летит в противоположную сторону.

Медузы, каракатицы и другие обитатели морских глубин передвигаются, вбирая воду, а затем выбрасывая её.

На законе сохранения импульса основана реактивная тяга. Мы знаем, что при движении ракеты с реактивным двигателем в результате сгорания топлива из сопла выбрасывается струя жидкости или газа (реактивная струя ). В результате взаимодействия двигателя с вытекающим веществом появляется реактивная сила . Так как ракета вместе с выбрасываемым веществом является замкнутой системой, то импульс такой системы не меняется со временем.

Реактивная сила возникает в результате взаимодействия только частей системы. Внешние силы не оказывают никакого влияния на её появление.

До того, как ракета начала двигаться, сумма импульсов ракеты и горючего была равна нулю. Следовательно, по закону сохранения импульса после включения двигателей сумма этих импульсов тоже равна нулю.

где - масса ракеты

Скорость истечени газа

Изменение скорости ракеты

∆ m f - расход массы топлива

Предположим, ракета работала в течение времени t .

Разделив обе части уравнения на t , получим выражение

По второму закону Ньютона реактивная сила равна

Реактивная сила, или реактивная тяга, обеспечивает движение реактивного двигателя и объекта, связанного с ним, в сторону, противоположную направлению реактивной струи.

Реактивные двигатели применяются в современных самолётах и различных ракетах, военных, космических и др.

Импульс - это одна из самых фундаментальных характеристик физической системы. Импульс замкнутой системы сохраняется при любых происходящих в ней процессах.

Знакомство с этой величиной начнем с простейшего случая. Импульсом материальной точки массы движущейся со скоростью называется произведение

Закон изменения импульса. Из этого определения можно с помощью второго закона Ньютона найти закон изменения импульса частицы в результате действия на нее некоторой силы Изменяя скорость частицы, сила изменяет и ее импульс: . В случае постоянной действующей силы поэтому

Скорость изменения импульса материальной точки равна равнодействующей всех действующих на нее сил. При постоянной силе промежуток времени в (2) может быть взят любым. Поэтому для изменения импульса частицы за этот промежуток справедливо

В случае изменяющейся со временем силы весь промежуток времени следует разбить на малые промежутки в течение каждого из которых силу можно считать постоянной. Изменение импульса частицы за отдельный промежуток вычисляется по формуле (3):

Полное изменение импульса за весь рассматриваемый промежуток времени равно векторной сумме изменений импульса за все промежутки

Если воспользоваться понятием производной, то вместо (2), очевидно, закон изменения импульса частицы записывается как

Импульс силы. Изменение импульса за конечный промежуток времени от 0 до выражается интегралом

Величина, стоящая в правой части (3) или (5), называется импульсом силы. Таким образом, изменение импульса Др материальной точки за промежуток времени равно импульсу силы, действовавшей на него в течение этого промежутка времени.

Равенства (2) и (4) представляют собой в сущности другую формулировку второго закона Ньютона. Именно в таком виде этот закон и был сформулирован самим Ньютоном.

Физический смысл понятия импульса тесно связан с имеющимся у каждого из нас интуитивным или почерпнутым из повседневного опыта представлением о том, легко ли остановить движущееся тело. Значение здесь имеют не скорость или масса останавливаемого тела, а то и другое вместе, т. е. именно его импульс.

Импульс системы. Понятие импульса становится особенно содержательным, когда оно применяется к системе взаимодействующих материальных точек. Полным импульсом Р системы частиц называется векторная сумма импульсов отдельных частиц в один и тот же момент времени:

Здесь суммирование выполняется по всем входящим в систему частицам, так что число слагаемых равно числу частиц системы.

Внутренние и внешние силы. К закону сохранения импульса системы взаимодействующих частиц легко прийти непосредственно из второго и третьего законов Ньютона. Силы, действующие на каждую из входящих в систему частиц, разобьем на две группы: внутренние и внешние. Внутренняя сила - это сила, с которой частица действует на Внешняя сила - это сила, с которой действуют на частицу все тела, не входящие в состав рассматриваемой системы.

Закон изменения импульса частицы в соответствии с (2) или (4) имеет вид

Сложим почленно уравнения (7) для всех частиц системы. Тогда в левой части, как следует из (6), получим скорость изменения

полного импульса системы Поскольку внутренние силы взаимодействия между частицами удовлетворяют третьему закону Ньютона:

то при сложении уравнений (7) в правой части, где внутренние силы встречаются только парами их сумма обратится в нуль. В результате получим

Скорость изменения полного импульса равна сумме внешних сил, действующих на все частицы.

Обратим внимание на то, что равенство (9) имеет такой же вид, как и закон изменения импульса одной материальной точки, причем в правую часть входят только внешние силы. В замкнутой системе, где внешние силы отсутствуют, полный импульс Р системы не изменяется независимо от того, какие внутренние силы действуют между частицами.

Полный импульс не меняется и в том случае, когда действующие на систему внешние силы в сумме равны нулю. Может оказаться, что сумма внешних сил равна нулю только вдоль какого-то направления. Хотя физическая система в этом случае и не является замкнутой, составляющая полного импульса вдоль этого направления, как следует из формулы (9), остается неизменной.

Уравнение (9) характеризует систему материальных точек в целом, но относится к определенному моменту времени. Из него легко получить закон изменения импульса системы за конечный промежуток времени Если действующие внешние силы неизменны в течение этого промежутка, то из (9) следует

Если внешние силы изменяются со временем, то в правой части (10) будет стоять сумма интегралов по времени от каждой из внешних сил:

Таким образом, изменение полного импульса системы взаимодействующих частиц за некоторый промежуток времени равно векторной сумме импульсов внешних сил за этот промежуток.

Сравнение с динамическим подходом. Сравним подходы к решению механических задач на основе уравнений динамики и на основе закона сохранения импульса на следующем простом примере.

щенный с сортировочной горки железнодорожный вагон массы движущийся с постоянной скоростью сталкивается с неподвижным вагоном массы и сцепляется с ним. С какой скоростью движутся сцепленные вагоны?

Нам ничего не известно о силах, с которыми взаимодействуют вагоны во время столкновения, кроме того факта, что на основании третьего закона Ньютона они в каждый момент равны по модулю и противоположны по направлению. При динамическом подходе необходимо задаваться какой-то моделью взаимодействия вагонов. Простейшее возможное предположение - что силы взаимодействия постоянны в течение всего времени, пока происходит сцепка. В таком случае с помощью второго закона Ньютона для скоростей каждого из вагонов спустя время после начала сцепки можно написать

Очевидно, что процесс сцепки заканчивается, когда скорости вагонов становятся одинаковыми. Предположив, что это произойдет спустя время х, имеем

Отсюда можно выразить импульс силы

Подставляя это значение в любую из формул (11), например во вторую, находим выражение для конечной скорости вагонов:

Конечно, сделанное предположение о постоянстве силы взаимодействия вагонов в процессе их сцепки весьма искусственно. Использование более реалистичных моделей приводит к более громоздким расчетам. Однако в действительности результат для конечной скорости вагонов не зависит от картины взаимодействия (разумеется, при условии, что в конце процесса вагоны сцепились и движутся с одной и той же скоростью). Проще всего в этом убедиться, используя закон сохранения импульса.

Поскольку никакие внешние силы в горизонтальном направлении на вагоны не действуют, полный импульс системы остается неизменным. До столкновения он равен импульсу первого вагона После сцепки импульс вагонов равен Приравнивая эти значения, сразу находим

что, естественно, совпадает с ответом, полученным на основе динамического подхода. Использование закона сохранения импульса позволило найти ответ на поставленный вопрос с помощью менее громоздких математических выкладок, причем этот ответ обладает большей общностью, так как при его получении не использовалась какая бы то ни было конкретная модель взаимодействия.

Проиллюстрируем применение закона сохранения импульса системы на примере более сложной задачи, где уже выбор модели для динамического решения затруднителен.

Задача

Разрыв снаряда. Снаряд разрывается в верхней точке траектории, находящейся на высоте над поверхностью земли, на два одинаковых осколка. Один из них падает на землю точно под точкой разрыва спустя время Во сколько раз изменится расстояние от этой точки по горизонтали, на которое улетит второй осколок, по сравнению с расстоянием, на котором упал бы неразорвавшийся снаряд?

Решение, Прежде всего напишем выражение для расстояния на которое улетел бы неразорвавшийся снаряд. Так как скорость снаряда в верхней точке (обозначим ее через направлена горизонтально, то расстояние равно произведению и на время падения с высоты без начальной скорости, равное на которое улетел бы неразорвавшийся снаряд. Так как скорость снаряда в верхней точке (обозначим ее через направлена горизонтально, то расстояние равно произведению на время падения с высоты без начальной скорости, равное тела, рассматриваемого как система материальных точек:

Разрыв снаряда на осколки происходит почти мгновенно, т. е. разрывающие его внутренние силы действуют в течение очень короткого промежутка времени. Очевидно, что изменением скорости осколков под действием силы тяжести за столь короткий промежуток времени можно пренебречь по сравнению с изменением их скорости под действием этих внутренних сил. Поэтому, хотя рассматриваемая система, строго говоря, не является замкнутой, можно считать, что ее полный импульс при разрыве снаряда остается неизменным.

Из закона сохранения импульса можно сразу выявить некоторые особенности движения осколков. Импульс - векторная величина. До разрыва он лежал в плоскости траектории снаряда. Поскольку, как сказано в условии, скорость одного из осколков вертикальна, т. е. его импульс остался в той же плоскости, то и импульс второго осколка также лежит в этой плоскости. Значит, и траектория второго осколка останется в той же плоскости.

Далее из закона сохранения горизонтальной составляющей полного импульса следует, что горизонтальная составляющая скорости второго осколка равна ибо его масса равна половине массы снаряда, а горизонтальная составляющая импульса первого осколка по условию равна нулю. Поэтому горизонтальная дальность полета второго осколка от

места разрыва равна произведению на время его полета. Как найти это время?

Для этого вспомним, что вертикальные составляющие импульсов (а следовательно, и скоростей) осколков должны быть равны по модулю и направлены в противоположные стороны. Время полета интересующего нас второго осколка зависит, очевидно, от того, вверх или вниз направлена вертикальная составляющая его скорости в момент разрыва снаряда (рис. 108).

Рис. 108. Траектория осколков после разрыва снаряда

Это легко выяснить, сравнив данное в условии время отвесного падения первого осколка с временем свободного падения с высоты А. Если то начальная скорость первого осколка направлена вниз, а вертикальная составляющая скорости второго - вверх, и наоборот (случаи а и на рис. 108).