Сколько лет назад зародилась жизнь на земле. Возникновение жизни на Земле

Проблема возникновения жизни на Земле издавна интересовала и волновала человека. Существует несколько гипотез о происхождении жизни на нашей планете:

жизнь создана Богом;
жизнь на Землю занесена извне;
живое на планете неоднократно самозарождалось из неживого;
жизнь существовала всегда;
жизнь возникла как следствие биохимической революции.

Все многообразие различных гипотез сводится к двум взаимоисключаемым точкам зрения. Сторонники теории биогенеза полагали, что все живое происходит только от живого. Их противники защищали теорию абиогенеза – они считали возможным происхождение живого от неживого.

Многие ученые допускали возможность самозарождения жизни. Невозможность самопроизвольного зарождения жизни была доказана Луи Пастером.

Второй этап – образование из простых органических соединений в водах первичного океана белков, жиров, углеводов, нуклеиновых кислот. Разрозненные молекулы этих соединений концентрировались и формировали коацерваты, действующие как открытые системы, способные к обмену веществ с окружающей средой и росту.

Третий этап – в результате взаимодействия коацерватов с нуклеиновыми кислотами образовались первые живые существа – пробионты, способные, помимо роста и обмена веществ, к самовоспроизведению.

Доктор геолого-минералогических наук И. А. РЕЗАНОВ

Говоря языком литературы, жизнь родилась, «когда Земля вскрикнула». Но чтобы Земля вскрикнула, оказалось недостаточно опыта профессора Челленджера и мало воображения Конан-Дойля, заставившего своего героя бурить скважину. Если говорить научным языком, то я полагаю, что мы обязаны жизнью двум катастрофам космического масштаба. По-моему, лишь один источник информации способен достоверно рассказать, какие события привели к возникновению жизни,- это «каменная летопись» планеты.

Неспециалисту трудно поверить, что радиоактивный анализ позволяет не только точно датировать эпизоды геологического сценария даже такой непредставимой давности, но и воссоздать картины физических процессов того времени. Как же из мертвой материи возникла жизнь?

Согласно новейшим геологическим данным, в первые 600 миллионов лет существования Земли (4,0-3,9 млрд лет назад) на планете царили такие экстремальные условия, что жизнь была невозможна. Плотная атмосфера состояла в основном из водорода с примесью гелия. Жерла многочисленных вулканов извергали углекислоту, метан, аммиак, сероводород и другие газы. Анализ камней-патриархов показал, что давление доходило до шести тысяч атмосфер, поверхность планеты нагревалась до 600 °С, то есть в этом адском пекле было жарче, чем сейчас на Венере, где жизнь не обнаружена.

А вот породы помоложе, родившиеся 3,8 миллиарда лет назад и позже, формировались уже в условиях, близких к современным. Эти страницы каменной летописи свидетельствуют, что к тому времени плотная и сильно нагретая водородная атмосфера покинула планету. Понять, чем это спровоцировано, удалось, только дождавшись возвращения космических аппаратов с Луны. Изучая пробы лунного грунта, селенологи в этом космическом приложении к каменной летописи Земли прочитали, что 3,9 миллиарда лет назад в Солнечной системе произошла гигантская катастрофа. Лунные моря — кратерообразные воронки диаметром до 1200 километров — именно в то время были выбиты при бомбардировке гигантскими астероидами. Космические тела, бомбя Луну, дали ей мощный импульс тепла, которое разогрело ее недра до плавления. С тех пор на поверхности Луны выделяются два типа рельефа: светлые «материки» и темные «моря», залитые расплавленными базальтами.

Наиболее вероятная причина катастрофы, полагали академик В. Г. Фесенков и многие другие астрономы,- это взрыв планеты, орбита которой совпадала с поясом астероидов, расположенным между орбитами Марса и Юпитера.

Если мерить масштабами Солнечной системы, то Луна недалеко от Земли. Следовательно, и на Землю обрушился шквал астероидов и метеоритов. Все знают, что звук передается благодаря колебаниям молекул. Если на Луне и тогда атмосферы не было, то все эти катаклизмы вершились в жуткой тишине (для человека, конечно, если бы он там мог присутствовать). Но что за циклопическую симфонию услышал бы свидетель над нашей планетой? Пожалуй, слабо сказать вслед за Конан-Дойлем, что «Земля вскрикнула». Она взревела. Падая, обломки-астероиды вызвали мощные воздушные течения, и в пекле стало на 100 градусов жарче. Дополнительного тепла хватило, чтобы сорвать с Земли ее водородное одеяние. И только после этого на Земле появились подходящие условия для возникновения жизни. Как говорится, не было бы счастья, да несчастье помогло.

Получается, что катастрофа стала необходимым условием рождения жизни, но было ли этого достаточно? Нет, потому что на поверхности Земли не осталось ни атмосферы, ни гидросферы, а кора и мантия расплавились. Планету обволакивала расплавленная, вязкая гранитная кора, не пропускавшая сквозь себя газы. Газы копились в менее вязкой мантии. Лишь при давлении не менее десяти тысяч атмосфер и температуре не ниже 1000° плохо растворимые в магме газы СО, С02, Н2, СН4, NH3 прорывались сквозь кору в виде гигантских струй.

Известно, что при вулканическом извержении образуются сложные органические соединения (аминокислоты, сахара, порфирины). Так, только за одно извержение вулкана Тятя на Курильских островах в 1973 г. в пепле накопилось 200 тонн сложной органики. Сколько же ее образовалось на планете после срыва первичной водородной атмосферы с Земли, когда то и дело фонтанировали гигантские газовые струи с интенсивностью, в тысячи раз превышающей силу нынешних вулканических извержений? В ту пору в жерлах газовых вулканов ежегодно синтезировались миллионы тонн органических соединений. За геологически короткое время (первые миллионы лет) на поверхности планеты испекся слоеный пирог толщиной в несколько десятков метров из чередующихся прослоек пепла и органических соединений.

Обилие органики было второй необходимой причиной для рождения жизни на Земле. Но и этого было недостаточно. Чего же еще?

Более ста лет назад знаменитый французский естествоиспытатель Луи Пастер обнаружил, что органические соединения в составе растений и животных оптически асимметричны — они вращают плоскость поляризации падающего на них света. Все аминокислоты, входящие в состав животных и растений, вращают плоскость поляризации влево, а все сахара — вправо. Если мы синтезируем такие же по химическому составу соединения, то в каждом из них будет равное количество лево- и правовращающих молекул.

Теперь представьте себе, что среда с левыми и правыми молекулами перешла в состояние только с левыми или только с правыми молекулами. Такую среду специалисты называют хирально (от греческого слова «хейра» — рука) упорядоченной. Самовоспроизведение живого (биопоэз — по определению Д. Бернала) могло возникнуть и поддерживаться только в такой среде.

Советский ученый Л. Л. Морозов доказал, что переход к хиральной упорядоченности мог произойти не эволюционно, а только при резком фазовом изменении. Академик В. И. Гольданский назвал этот переход хиральной катастрофой. Все-таки ученые отличаются от остальных людей не только знаниями. Все привыкли считать, что катастрофа — это нечто ужасающее, а физики назвали катастрофой явление, благодаря которому зародилась жизнь и, в конечном счете, они сами.

Как же возникли условия для фазовой катастрофы, вызвавшей хиральный переход?

Наиболее важным было то, что нижние слои нарастающего пепло-органического пирога жарились на разогретой до 600 земной коре, а верхние остывали до температуры космоса, то есть абсолютного нуля. Перепад температуры достигал 1000°. Ясно, что низ пирога пригорал, то есть органические молекулы плавились под действием высокой температуры и даже полностью разрушались, а верх пирога оставался до поры до времени непропеченным, так как органические молекулы замораживались. Конечно, газы и, воз- можно, пары воды, которые просачивались из земной коры, меняли химический состав органических соединений. Газы несли с собой тепло, из-за чего граница плавления органического слоя смещалась вверх и вниз.

При очень низких давлениях атмосферы вода была на земной поверхности лишь в виде пара и льда. Когда же давление достигало так называемой тройной точки воды (0,006 атмосферы), вода впервые смогла находиться в виде жидкости.

Конечно, лишь экспериментально можно доказать, что именно вызвало хиральный переход: земные или космические причины. Но так или иначе в какой-то момент хирально упорядоченные молекулы (а именно — левовращающие аминокислоты и правовращающие сахара) оказались более устойчивыми и начался неостановимый рост их количества — хиральный переход.

Каменная летопись повествует и о том, что тогда на Земле не было ни гор, ни впадин. Полурасплавленная гранитная кора представляла собой поверхность столь же ровную, как уровень современного океана. Однако в пределах этой равнины все же были понижения из-за неравномерного распределения масс внутри . Эти понижения сыграли чрезвычайно важную роль. Дело в том, что плоскодонные впадины поперечником в сотни и даже тысячи километров и глубиной не более ста метров, вероятно, и стали колыбелью жизни. Ведь в них стекала вода, собиравшаяся на поверхности планеты. Вода разбавляла хиральные органические соединения в пепловом слое. Постепенно менялся химический состав соединения, стабилизировалась температура. Переход от неживого к живому, начавшийся в безводных условиях, продолжался уже в водной среде.

Таков ли сюжет зарождения жизни ? Вероятнее всего, что да. В геологическом разрезе Исуа (Западная Гренландия), возраст которого 3,8 миллиарда лет, найдены бензино- и нефтеподобные соединения с изотопным соотношением С12/С13, свойственным углероду фотосинтетического происхождения. Если биологическая природа углеродистых соединений из разреза Исуа подтвердится, то получится, что весь сюжет — от возникновения хиральной органики до появления клетки, способной к фотосинтезу и размножению,- был разыгран лишь за сто миллионов лет.

Космическое по масштабам явление, предсказанное на кончике пера советскими учеными, ждет своего экспериментального подтверждения, чтобы перейти из разряда дерзких гипотез в почетный разряд теорий.

Общепризнанная теория – вся вселенная была сжата до размеров протона, но после мощного взрыва она расширилась до бесконечности. Это событие произошло около 10 миллиардов лет назад и в результате, получившуюся вселенную наполнила космическая пыль, из которой начали формироваться звезды и планеты около них. Земля по космическим меркам, является очень молодой планетой, она сформировалась около пяти миллиардов лет назад, но вот как возникла на ней жизнь? На этот вопрос ученые до сих пор не могут найти однозначного ответа.

Согласно теории Дарвина, жизнь на Земле возникла, как только установились подходящие условия, то есть, появилась атмосфера, температура обеспечивающая протекание жизненных процессов и вода. По мнению ученого, первые простейшие одноклеточные организмы, появились именно под воздействием Солнца на воду. Позднее, они эволюционировали до бурых водорослей и других видов растений. Таким образом, если следовать этому правилу, все многоклеточные виды на планете произошли от растений. Ответа же на самый главный вопрос так и не получено: « Каким образом может появиться жизнь из ничего, пусть даже и под воздействием Солнца?». Достаточно провести простой опыт – налить в банку скважинной воды, после герметично закрыть и поставить на солнечный свет. В любом случае, жидкость останется такой же как и была, возможно произойдут микроскопические изменения в ее составе, но микроорганизмы там не появятся. Если же провести тот же опыт с открытой банкой, то уже через несколько дней можно будет заметить, как стенки начинают покрываться слоем одноклеточных водорослей.

Исходя из этого, можно сказать, что для зарождения жизни и даже самых простейших ее форм, необходимо постороннее вмешательство. Конечно, версия о самостоятельном происхождении видов весьма соблазнительна тем, что доказывает якобы самостоятельность человечества не обязанного Богу или пришельцам с иных планет.

В последнее время все больше появляется сторонников космического происхождения, как человека, так и всей биосферы. Как ни странно, однако исследователи в своих изысканиях совмещают обращение не только к артефактам уже найденным или находимым, но и к Библии. Если интерпретировать написанное там, на обычный язык, то можно провести аналогии не с чудесами, а с вполне объяснимыми физическими явлениями. Исходя из этого материала, существует некий высший разум, который и заселил планету живыми существами, а также человеческой расой. В книге сказано, что Бог создал человека по своему образу и подобию, то есть, не исключено, что мы являемся копией, во всяком случае, внешне повторяем своего создателя.

Человек является биороботом – то есть искусственно созданным организмом с интеллектом, с заложенной возможностью к самосовершенствованию. Не исключено, что момент заселения людьми планеты, как раз и описывается в эпизоде, когда Адам с Евой были изгнаны из райского сада на Землю, где им пришлось самостоятельно приспосабливаться к жестким жизненным условиям. Вполне может быть, что под райским садом подразумевается место, где сделанные создателем биороботы проходили тестирование в тепличных условиях и после проверки работоспособности, их выпустили в суровую реальность.

Конечно же остается вопрос: «А как же в таком случае многообразие видов животных? Ведь не мог же создатель создавать виды, подвиды и отряды, вплоть до одноклеточных существ?». Предполагается, что здесь все же имела место эволюция, однако более ускоренная и происходящая под контролем создателей. Нельзя не отрицать тот факт, что в каждом из видов животных, все же есть признаки предшествующего по эволюционной лестнице вида. Птицы очень сильно похожи на пресмыкающихся, в особенности вытянутой формой клюва и кожей своих лап. Очертания пресмыкающихся, в свою очередь сильно напоминают рыб, ну а многие млекопитающие вобрали в себя признаки сразу нескольких предшествующих видов. Смотря на кошку без труда можно угадать признаки, как пресмыкающихся, так и земноводных. Любовь к теплому месту, передалась кошачьим скорее всего в генах, и несмотря на то что они теплокровные, всегда предпочитают обитать там, где есть источник тепла. Такой же признак характерен именно для холоднокровных животных, неспособных выработать тепло самостоятельно. Изучая же внимательно кошачий глаз можно заметить, что он очень похож на глаза крокодила, да и форма головы с небольшими изменениями напоминает змеиную. Порой складывается такое впечатление, что над созданием видов, работал некто, таким же способом, как, например, работают конструктора автоконцерна, беря за основу шасси предыдущего автомобиля и добавляя немного изменений.

Если это так, то неудивительно, что некоторые из животных видов, просто вызывают недоумение, ассоциируясь с ситуацией, когда при сборке не хватает деталей и используют то, что есть в наличии. Примеров таких животных особенно много в Австралии. Помимо кенгуру, относящегося к грызунам, но обладающего мощным опорно-двигательным аппаратом как у лошади, есть и другие занимательные виды, например, утконос. Это животное относится к млекопитающим, но размножается как птицы – откладывает яйца и имеет костяной клюв, похожий на гусиный. Строение его тела очень похоже на бобра, а родившиеся детеныши питаются молоком не через соски матери, а слизывая выступающую на поверхности брюха жидкость. Сами ли создатели выполняли такую кропотливую работу, или же задали только базовое направление в развитии, а формирование отдельных подвидов уже происходило самостоятельно – на сегодня этот вопрос остается открытым.

Варианты эволюции можно рассматривать с разных сторон, но большинство исследователей сходятся все же во мнении, что сама эволюция, если она и имела место, является всего лишь следствием, а вот причину предстоит выяснить. Не менее популярно мнение, что причиной появления жизни на Земле, стало падение метеорита, на котором в замерзшем состоянии находились простейшие одноклеточные организмы. Поскольку к тому времени на планете уже установился теплый климат, а большую часть поверхности занимал древний мировой океан, то создались все условия для последующего развития жизни. Бытует также версия, что метеорит на самом деле был послан разумными существами именно с целью заселения планеты, что также не лишено права на существование.

Вместо метеорита мог быть и просто оптический информационный луч, например, отправленный из другой вселенной или даже другого измерения. В самом деле, зачем таким высокоразвитым существам посылать сквозь миллиарды световых лет, что-то материальное? При своем уровне развития они уже давно смогли открыть возможности телепортации и свободно оперировать пространством и временем, появляясь именно там где это необходимо. Переданная с помощью луча информация здесь на земле материализовалась, в те же самые организмы и, таким образом был запущен процесс эволюции.

Конечно же жизнь могла быть не только спровоцирована случайно залетевшим метеоритом, версия о том что донором мог стать Марс также находит немало сторонников. Тайну этой планеты до сих пор не могут разгадать. Все что имеется на руках у ученых, это снимки прореженной глубокими впадинами красной поверхности, загадочное лицо, скорее всего являющееся особенностью рельефа и незначительные пробы грунта. Затрачены миллиарды долларов на конструирование и запуск аппаратов, но большинство этих попыток не принесли результата. Создается впечатление, что некая сила на этой планете упорно не желает иметь контакт с землянами.

Предполагается, что когда-то Марс был населен и богат природными ресурсами, как и Земля, но впоследствии, его магнитное поле ослабело. Это привело к тому, что большая часть атмосферы и влаги улетучились в космос, в результате тело планеты осталось без защиты перед жестким ультрафиолетовым излучением. Не исключено, что жители Марса обладали необходимыми знаниями и смогли переселить на соседнюю планету некоторые виды животных, переселиться сами, либо же отправить капсулу с микроорганизмами.

Поиски первоисточника жизни, будут продолжаться еще очень долго, ведь с каждым новым открытием в науке и особенно генетике, удается лишь слегка приоткрыть завесу тайны о происхождении человечества, что в свою очередь приводит к появлению новых гипотез. Все же, каким бы ни был ответ на этот вопрос, узнать его вряд ли будет суждено, пока человек не научится чувствовать ответственность за свою уникальную планету, на которой ему посчастливилось жить.

No related links found



Вопрос происхождения жизни на Земле — один из самых сложных вопросов современного естествознания, на который до настоящего времени нет однозначного ответа.

Существует несколько теорий происхождения жизни на Земле, наиболее известные из которых:

  • теория самопроизвольного (спонтанного) зарождения;
  • теория креационизма (или сотворения);
  • теория стационарного состояния;
  • теория панспермии;
  • теория биохимической эволюции (теория А.И. Опарина).

Рассмотрим основные положения этих теорий.

Теория самопроизвольного (спонтанного) зарождения

Теория самопроизвольного зарождения жизни была широко распространена в Древнем мире — Вавилоне, Китае, Древнем Египте и Древней Греции (этой теории придерживался, в частности, Аристотель).

Ученые Древнего мира и средневековой Европы верили в то, что живые существа постоянно возникают из неживой материи: черви — из грязи, лягушки — из тины, светлячки — из утренней росы и т.п. Так, известный голландский ученый 17 в. Ван-Гельмонт совершенно серьезно описывал в своем научном трактате опыт, в котором он за 3 недели получил в запертом темном шкафу мышей непосредственно из грязной рубашки и горсти пшеницы. Впервые широко распространенную теорию решился подвергнуть экспериментальной проверке итальянский ученый Франческо Реди (1688). Он поместил несколько кусков мяса в сосуды и часть из них закрыл кисеей. В открытых сосудах на поверхности гниющего мяса появились белые червячки — личинки мух. В сосудах же, прикрытых кисеей, личинки мух отсутствовали. Таким образом Ф. Реди удалось доказать, что личинки мух появляются не из гниющего мяса, а из яиц, отложенных мухами на его поверхность.

В 1765 г. известный итальянский ученый и врач Ладзаро Спаланцани прокипятил в запаянных стеклянных колбах мясные и овощные бульоны. Бульоны в запаянных колбах не портились. Он сделал вывод, что под действием высокой температуры погибли все живые существа, способные вызывать порчу бульона. Однако опыты Ф. Реди и Л. Спаланцани убедили далеко не всех. Ученые-виталисты (от лат.vita - жизнь) считали, что в прокипяченном бульоне не происходит самозарождения живых существ, так как в нем разрушается особая «жизненная сила», которая не может проникнуть в запаянный сосуд, поскольку переносится по воздуху.

Споры но поводу возможности самозарождения жизни активизировались в связи с открытием микроорганизмов. Если сложные живые существа не могут самозарождаться, возможно, это могут микроорганизмы?

В связи с этим в 1859 г. французская Академия объявила о присуждении премии тому, кто окончательно решит вопрос о возможности или невозможности самозарождения жизни. Эту премию получил в 1862 г. знаменитый французский химик и микробиолог Луи Пастер. Так же как Спаланцани, он прокипятил питательный бульон в стеклянной колбе, но колба была не обычная, а с горлышком в виде 5-образной трубки. Воздух, а следовательно и «жизненная сила», могли проникать в колбу, но пыль, а вместе с нею и микроорганизмы, присутствующие в воздухе, оседали в нижнем колене 5-образной трубки, и бульон в колбе оставался стерильным (рис. 1). Однако стоило сломать горло колбы или ополоснуть стерильным бульоном нижнее колено 5-образной трубки, как бульон начинал быстро мутнеть — в нем появлялись микроорганизмы.

Таким образом, благодаря работам Луи Пастера теория самозарождения была признана несостоятельной и в научном мире утвердилась теория биогенеза, краткая формулировка которой — «все живое — от живого».

Рис. 1. Пастеровская колба

Однако, если все живые организмы в исторически обозримый период развития человечества происходят только от других живых организмов, естественно возникает вопрос: когда и каким образом появились на Земле первые живые организмы?

Теория креационизма

Теория креационизма предполагает, что все живые организмы (либо только простейшие их формы) были в определенный период времени сотворены («сконструированы») неким сверхъестественным существом (божеством, абсолютной идеей, сверхразумом, сверхцивилизацией и т.п.). Очевидно, что именно этой точки зрения с глубокой древности придерживались последователи большинства ведущих религий мира, в частности христианской религии.

Теория креационизма и в настоящее время достаточно широко распространена, причем не только в религиозных, но и в научных кругах. Обычно ее используют для объяснения наиболее сложных, не имеющих на сегодняшний день решения вопросов биохимической и биологической эволюции, связанных с возникновением белков и нуклеиновых кислот, формированием механизма взаимодействия между ними, возникновением и формированием отдельных сложных органелл или органов (таких, как рибосома, глаз или мозг). Актами периодическою «сотворения» объясняется и отсутствие четких переходных звеньев от одного типа животных
к другому, например от червей к членистоногим, от обезьяны к человеку и т.п. Необходимо подчеркнуть, что философский спор о первичности сознания (сверхразума, абсолютной идеи, божества) либо материи принципиально не разрешим, однако, поскольку попытка объяснить любые трудности современной биохимии и эволюционной теории принципиально непостижимыми сверхъестественными актами творения выводит эти вопросы за рамки научных исследований, теорию креационизма нельзя отнести к разряду научных теорий происхождения жизни на Земле.

Теории стационарного состояния и панспермии

Обе эти теории представляют собой взаимодополняющие элементы единой картины мира, сущность которой заключается в следующем: вселенная существует вечно и в ней вечно существует жизнь (стационарное состояние). Жизнь переносится с планеты на планету путешествующими в космическом пространстве «семенами жизни», которые могут входить в состав комет и метеоритов (панспермия). Подобных взглядов на происхождение жизни придерживался, в частности, основоположник учения о биосфере академик В.И. Вернадский.

Однако теория стационарного состояния, предполагающая бесконечно долгое существование вселенной, не согласуется с данными современной астрофизики, согласно которым вселенная возникла сравнительно недавно (около 16 млрд лет т.н.) путем первичного взрыва.

Очевидно, что обе теории (панспермии и стационарного состояния) вообще не предлагают объяснения механизма первичного возникновения жизни, перенося его на другие планеты (панспермия) либо отодвигая по времени в бесконечность (теория стационарного состояния).

Теория биохимической эволюции (теория А.И. Опарина)

Из всех теорий происхождения жизни наиболее распространенной и признанной в научном мире является теория биохимической эволюции, предложенная в 1924 г. советским биохимиком академиком А.И. Опариным (в 1936 г. он подробно изложил ее в своей книге «Возникновение жизни»).

Сущность этой теории состоит в том, что биологической эволюции — т.е. появлению, развитию и усложнению различных форм живых организмов, предшествовала химическая эволюция — длительный период в истории Земли, связанный с появлением, усложнением и совершенствованием взаимодействия между элементарными единицами, «кирпичиками», из которых состоит все живое — органическими молекулами.

Предбиологическая (химическая) эволюция

По мнению большинства ученых (в первую очередь астрономов и геологов), Земля сформировалась как небесное тело около 5 млрд лет т.н. путем конденсации частиц вращавшегося вокруг Солнца газопылевого облака.

Под влиянием сил сжатия частицы, из которых формируется Земля, выделяют огромное количество тепла. В недрах Земли начинаются термоядерные реакции. В результате Земля сильно разогревается. Таким образом, 5 млрд лет т.н. Земля представляла собой несущийся в космическом пространстве раскаленный шар, температура поверхности которою достигала 4000-8000°С (смеха. 2).

Постепенно, за счет излучения тепловой энергии в космическое пространство, Земля начинает остывать. Около 4 млрд лет т.н. Земля остывает настолько, что на ее поверхности формируется твердая кора; одновременно из ее недр вырываются легкие, газообразные вещества, поднимающиеся вверх и формирующие первичную атмосферу. По составу первичная атмосфера существенно отличалась от современной. Свободный кислород в атмосфере древней Земли, по-видимому, отсутствовал, а в ее состав входили вещества в восстановленном состоянии, такие, как водород (Н 2), метан (СН 4), аммиак (NH 3), пары воды (Н 2 О), а возможно, также азот (N 2), окись и двуокись углерода (СО и С0 2).

Восстановительный характер первичной атмосферы Земли чрезвычайно важен для зарождения жизни, поскольку вещества в восстановленном состоянии обладают высокой реакционной способностью и в определенных условиях способны взаимодействовать друг с другом, образуя органические молекулы. Отсутствие в атмосфере первичной Земли свободного кислорода (практически весь кислород Земли был связан в виде окислов) также является важной предпосылкой возникновения жизни, поскольку кислород легко окисляет и тем самым разрушает органические соединения. Поэтому при наличии в атмосфере свободного кислорода накопление на древней Земле значительного количества органических веществ было бы невозможно.

Около 5 млрд лет т.п. — возникновение Земли как небесного тела; температура поверхности — 4000-8000°С

Около 4 млрд лет т.н. - формирование земной коры и первичной атмосферы

При температуре 1000°С — в первичной атмосфере начинается синтез простых органических молекул

Энергию для синтеза дают:

Температура первичной атмосферы ниже 100°С — формирование первичного океана -

Синтез сложных органических молекул — биополимеров из простых органических молекул:

  • простые органические молекулы — мономеры
  • сложные органические молекулы — биополимеры

Схема. 2. Основные этапы химической эволюции

Когда температура первичной атмосферы достигает 1000°С, в ней начинается синтез простых органических молекул, таких, как аминокислоты, нуклеотиды, жирные кислоты, простые сахара, многоатомные спирты, органические кислоты и др. Энергию для синтеза поставляют грозовые разряды, вулканическая деятельность, жесткое космическое излучение и, наконец, ультрафиолетовое излучение Солнца, от которого Земля еще не защищена озоновым экраном, причем именно ультрафиолетовое излучение ученые считают основным источником энергии для абиогенного (т.е. проходящею без участия живых организмов) синтеза органических веществ.

Признанию и широкому распространению теории А.И. Опарина во многом способствовало то, что процессы абиогенного синтеза органических молекул легко воспроизводятся в модельных экспериментах.

Возможность синтеза органических веществ из неорганических была известна с начала 19 в. Уже в 1828 г. выдающийся немецкий химик Ф. Вёлер синтезировал органическое вещество — мочевину из неорганическою — циановокислого аммония. Однако возможность абиогенного синтеза органических веществ в условиях, близких к условиям древней Земли, была впервые показана в опыте С. Миллера.

В 1953 г. молодой американский исследователь, студент- дипломник Чикагского университета Стенли Миллер воспроизвел в стеклянной колбе с впаянными в нес электродами первичную атмосферу Земли, которая, по мнению ученых того времени, состояла из водорода метана СН 4 , аммиака NH, и паров воды Н 2 0 (рис. 3). Через эту газовую смесь С. Миллер в течение недели пропускал электрические разряды, имитирующие грозовые. По окончании эксперимента в колбе были обнаружены α-аминокислоты (глицин, аланин, аспарагин, глутамин), органические кислоты (янтарная, молочная, уксусная, гликоколовая), у-оксимасляная кислота и мочевина. При повторении опыта С. Миллеру удалось получить отдельные нуклеотиды и короткие полинуклеотидные цепочки из пяти-шести звеньев.

Рис. 3. Установка С. Миллера

В дальнейших опытах по абиогенному синтезу, проводимых различными исследователями, использовались не только электрические разряды, но и другие виды энергии, характерные для древней Земли, — космическое, ультрафиолетовое и радиоактивное излучения, высокие температуры, присущие вулканической деятельности, а также разнообразные варианты газовых смеси, имитирующих первичную атмосферу. В результате был получен практически весь спектр органических молекул, характерных для живого: аминокислоты, нуклеотиды, жироподобные вещества, простые сахара, органические кислоты.

Более того, абиогенный синтез органических молекул может происходить на Земле и в настоящее время (например, в процессе вулканической деятельности). При этом в вулканических выбросах можно обнаружить не только синильную кислоту HCN, являющуюся предшественником аминокислот и нуклеотидов, но и отдельные аминокислоты, нуклеотиды и даже такие сложные по строению органические вещества, как порфирины. Абиогенный синтез органических веществ возможен не только на Земле, но и в космическом пространстве. Простейшие аминокислоты обнаружены в составе метеоритов и комет.

Когда температура первичной атмосферы опустилась ниже 100°С, на Землю обрушились горячие дожди и появился первичный океан. С потоками дождя в первичный океан поступали абиогенно синтезированные органические вещества, что превратило его, но образному выражению английского биохимика Джона Холдейна, в разбавленный «первичный бульон». По-видимому, именно в первичном океане начинаются процессы образования из простых органических молекул — мономеров сложных органических молекул — биополимеров (см. рис. 2).

Однако процессы полимеризации отдельных нуклеогидов, аминокислот и Сахаров — это реакции конденсации, они протекают с отщеплением воды, следовательно, водная среда способствует не полимеризации, а, напротив, гидролизу биополимеров (т.е. разрушению их с присоединением воды).

Образование биополимеров (в частности, белков из аминокислот) могло происходить в атмосфере при температуре около 180°С, откуда они смывались в первичный океан с атмосферными осадками. Кроме того, возможно, на древней Земле аминокислоты концентрировались в пересыхающих водоемах и полимеризовались в сухом виде под действием ультрафиолетового света и тепла лавовых потоков.

Несмотря на то что вода способствует гидролизу биополимеров, в живой клетке синтез биополимеров осуществляется именно в водной среде. Этот процесс катализируют особые белки-катализаторы — ферменты, а необходимая для синтеза энергия выделяется при распаде аденозинтрифосфорной кислоты — АТФ. Возможно, синтез биополимеров в водной среде первичного океана катализировался поверхностью некоторых минералов. Экспериментально показано, что раствор аминокислоты аланина может полимеризоваться в водной среде в присутствии особого вида глинозема. При этом образуется пептид полиаланин. Реакция полимеризации аланина сопровождается распадом АТФ.

Полимеризация нуклеотидов проходит легче, чем полимеризация аминокислот. Показано, что в растворах с высокой концентрацией солей отдельные нуклеотиды самопроизвольно полимеризуются, превращаясь в нуклеиновые кислоты.

Жизнь всех современных живых существ — это процесс непрерывного взаимодействия важнейших биополимеров живой клетки — белков и нуклеиновых кислот.

Белки — это «молекулы-рабочие», «молекулы-инженеры» живой клетки. Характеризуя их роль в обмене веществ, биохимики часто используют такие образные выражения, как «белок работает», «фермент ведет реакцию». Важнейшая функция белков- каталитическая . Как известно, катализаторы — это вещества, которые ускоряют химические реакции, но сами в конечные продукты реакции не входят. Бачки-катализаторы называются ферментами. Ферменты в согни и тысячи раз ускоряют реакции обмена веществ. Обмен веществ, а значит, и жизнь без них невозможны.

Нуклеиновые кислоты — это «молекулы-компьютеры», молекулы — хранители наследственной информации. Нуклеиновые кислоты хранят информацию не обо всех веществах живой клетки, а только о белках. Достаточно воспроизвести в дочерней клетке белки, свойственные материнской клетке, чтобы они точно воссоздали все химические и структурные особенности материнской клетки, а также свойственный ей характер и темпы обмена веществ. Сами нуклеиновые кислоты также воспроизводятся благодаря каталитической активности белков.

Таким образом, тайна зарождения жизни — это тайна возникновения механизма взаимодействия белков и нуклеиновых кислот. Какими же сведениями об этом процессе располагает современная наука? Какие молекулы явились первичной основой жизни — белки или нуклеиновые кислоты?

Ученые полагают, что несмотря на ключевую роль белков в обмене веществ современных живых организмов, первыми «живыми» молекулами были не белки, а нуклеиновые кислоты, а именно рибонуклеиновые кислоты (РНК).

В 1982 г. американский биохимик Томас Чек открыл автокаталитические свойства РНК. Он экспериментально показал, что в среде, содержащей в высокой концентрации минеральные соли, рибонуклеотиды спонтанно (самопроизвольно) полимеризуются, образуя полинуклеотиды — молекулы РНК. На исходных полинуклеотидных цепях РНК, как на матрице, путем спаривания комплементарных азотистых оснований образуются РНК-копии. Реакция матричного копирования РНК катализируется исходной молекулой РНК и не требует участия ферментов либо других белков.

Дальнейшие события достаточно хорошо объясняются процессом, который можно было бы назвать «естественным отбором» на уровне молекул. При самокопировании (самосборке) молекул РНК неизбежно возникают неточности, ошибки. Содержащие ошибки копии РНК снова копируются. При повторном копировании вновь могут возникнуть ошибки. В результате популяция молекул РНК на определенном участке первичного океана будет неоднородна.

Поскольку параллельно с процессами синтеза идут и процессы распада РНК, в реакционной среде будут накапливаться молекулы, обладающие либо большей стабильностью, либо лучшими автокаталитическими свойствами (т.е. молекулы, которые быстрее себя копируют, быстрее «размножаются»).

На некоторых молекулах РНК, как на матрице, может происходить самосборка небольших белковых фрагментов — пептидов. Вокруг молекулы РНК образуется белковый «чехол».

Наряду с автокаталитическими функциями Томас Чек обнаружил у молекул РНК и явление самосплайсинга. В результате самосплайсинга участки РНК, не защищенные пептидами, самопроизвольно удаляются из РНК (они как бы «вырезаются» и «выбрасываются»), а оставшиеся участки РНК, кодирующие белковые фрагменты, «срастаются», т.е. самопроизвольно объединяются в единую молекулу. Эта новая молекула РНК уже будет кодировать большой сложный белок (рис. 4).

По-видимому, первоначально белковые чехлы выполняли в первую очередь, защитную функцию, предохраняя РНК от разрушения и повышая тем самым ее стабильность в растворе (такова функция белковых чехлов и у простейших современных вирусов).

Очевидно, что на определенном этапе биохимической эволюции преимущество получили молекулы РНК, кодирующие не только защитные белки, но и белки-катализаторы (ферменты), резко ускоряющие скорость копирования РНК. По-видимому, именно таким образом и возник процесс взаимодействия белков и нуклеиновых кислот, который мы в настоящее время называем жизнью.

В процессе дальнейшего развития, благодаря появлению белка с функциями фермента — обратной транскриптазы, на одно- цепочечных молекулах РНК стали синтезироваться состоящие из двух цепей молекулы дезоксирибонуклеиновой кислоты (ДНК). Отсутствие у дезоксирибозы ОН-группы в 2" положении делает молекулы ДНК более стабильными по отношению к гидролитическому расщеплению в слабощелочных растворах, а именно слабощелочной была реакция среды в первичных водоемах (эта реакция среды сохранилась и в цитоплазме современных клеток).

Где же происходило развитие сложного процесса взаимодействия белков и нуклеиновых кислот? По теории А.И. Опарина, местом зарождения жизни стали так называемые коацерватные капли.

Рис. 4. Гипотеза возникновения взаимодействия белков и нуклеиновых кислот: а) в процессе самокопирования РНК накапливаются ошибки (1 — нуклеотиды, соответствующие исходной РНК; 2 — нуклеотиды, не соответствующие исходной РНК, — ошибки в копировании); б) на часть молекулы РНК за счет ее физико-химических свойств «налипают» аминокислоты (3 — молекула РНК; 4 — аминокислоты), которые, взаимодействуя друг с другом, превращаются в короткие белковые молекулы — пептиды. В результате свойственного молекулам РНК самосплайсинга незащищенные пептидами участки молекулы РНК разрушаются, а оставшиеся «срастаются» в единую молекулу, кодирующую крупный белок. В результате возникает молекула РНК, покрытая белковым чехлом (сходное строение имеют и наиболее примитивные современные вирусы, например вирус табачной мозаики)

Явление коацервации состоит в том, что в некоторых условиях (например, в присутствии электролитов) высокомолекулярные вещества отделяются от раствора, но не в форме осадка, а в виде более кон центрирован но го раствора — коацервата. При встряхивании коацерват распадается на отдельные мелкие капельки. В воде такие капли покрываются стабилизирующей их гидратной оболочкой (оболочкой из молекул воды) — рис. 5.

Коацерватные капли обладают некоторым подобием обмена веществ: иод воздействием чисто физико-химических сил они могут избирательно впитывать из раствора некоторые вещества и выделять в окружающую среду продукты их распада. За счет избирательного концентрирования веществ из окружающей среды они могут расти, а но достижении определенного размера начинают «размножаться», отпочковывая маленькие капельки, которые, в свою очередь, могут расти и «почковаться».

Возникшие в результате концентрирования белковых растворов коацерватные капли в процессе перемешивания под действием волн и ветра могут покрываться оболочкой из липи- дов: одинарной, напоминающей мицеллы мыла (при однократном отрыве капли от поверхности воды, покрытой липидным слоем), либо двойной, напоминающей клеточную мембрану (при повторном падении капли, покрытой однослойной липидной мембраной, на липидную пленку, покрывающую поверхность водоема — рис. 5).

Процессы возникновения коацерватных капель, их роста и «почкования», а также «одевания» их мембраной из двойного липидного слоя легко моделируются в лабораторных условиях.

Для коацерватных капель также существует процесс «естественного отбора», при котором в растворе сохраняются наиболее стабильные капли.

Несмотря на внешнее сходство коацерватных капель с живыми клетками, у коацерватных капель отсутствует главный признак живого — способность к точному самовоспроизведению, самокопированию. Очевидно, предшественниками живых клеток явились такие коацерватные капли, в состав которых вошли комплексы молекул-репликаторов (РНК или ДНК) и кодируемых ими белков. Возможно, комплексы РНК-белок длительное время существовали вне коацерватных капель в виде так называемого «свободноживущего гена», а возможно, их формирование проходило непосредственно внутри некоторых коацерватных капель.

Возможный путь перехода от коацерватных капель к примитивным клешам:

а) образование коацервата; 6) стабилизация коацерватных капель в водном растворе; в) — формирование вокруг капли двойного липидного слоя, похожего на клеточную мембрану: 1 — коацерватная капля; 2 — мономолекулярный слой липида на поверхности водоема; 3 — формирование вокруг капли одинарного липидного слоя; 4 — формирование вокруг капли двойного липидного слоя, похожего на клеточную мембрану; г) — коацерватная капля, окруженная двойным липидным слоем, с вошедшим в ее состав белково-нуклеотидным комплексом — прообраз первой живой клетки

Исключительно сложный, не до конца понятный современной науке процесс возникновения жизни на Земле прошел с исторической точки зрения чрезвычайно быстро. Уже 3,5 млрд лет т.н. химическая эволюция завершилась появлением первых живых клеток и началась биологическая эволюция.

Наука

По подсчетам ученых, жизнь на земле зародилась около 3 миллиардов лет назад : за это время простейшие организмы развились в сложные формы жизни. Однако для ученых до сих пор остается загадкой, как зародилась жизнь на планете, и они выдвинули несколько теорий, объясняющих этот феномен:

1. Электрические искры

В ходе знаменитого эксперимента Миллера-Юри (Miller-Urey Experiment), ученые доказали, что молнии могли способствовать появлению основных веществ, необходимых для зарождения жизни: электрические искры образовывают аминокислоты в атмосфере, состоящей из огромного количества воды, метана, аммиака и водорода. Затем из аминокислот развились более сложные формы жизни. Эту теорию несколько изменили после того, как исследователи выяснили, что атмосфера планеты миллиарды лет назад была бедна водородом. Ученые предположили, что метан, аммиак и водород содержались в вулканических облаках, насыщенных электрическими зарядами.


2. Глина

Химик Александр Грэм Кэрнс-Смит (Alexander Graham Cairns-Smith) из университета Глазго, Шотландия, выдвинул теорию о том, что на заре зарождения жизни в глине содержалось много органических компонентов, находящихся недалеко друг от друга, и что глина способствовала организации этих веществ в структуры, подобные нашим генам.

ДНК хранит информацию о структуре молекул, и генетические последовательности ДНК указывает на то, как аминокислоты должны построиться в белки. Кэрнс-Смит предполагает, что кристаллы глины способствовали организации органических молекул в упорядоченные структуры, а позднее этим стали заниматься сами молекулы, "без помощи" глины.


3. Глубоководные жерла

Согласно этой теории, жизнь зародилась в подводных гидротермальных жерлах, выбрасывающих молекулы, богатые водородом. На их каменистой поверхности эти молекулы могли собраться вместе и стать минеральными катализаторами для реакций, которые и привели к зарождению жизни. Даже сейчас у таких гидротермальных жерл, богатых химической и термальной энергией, обитает довольно большое количество живых существ.


4. Ледяное начало

3 миллиарда лет назад Солнце светило далеко не так ярко, как сейчас, и, соответственно, тепла до Земли доходило меньше. Вполне возможно, что поверхность земли покрывал толстый слой льда, который защищал хрупкие органические вещества , находящиеся в воде под ним, от ультрафиолетовых лучей и космического воздействия. К тому же, холод помог молекулам дольше просуществовать, в результате чего стали возможны реакции, приведшие к зарождению жизни.


5. Мир РНК

ДНК нужны белки для формирования, а белкам для образования нужна ДНК. Как могли они сформироваться друг без друга? Ученые предположили, что в этом процессе участвовала РНК, которая, так же, как и ДНК, хранит информацию. Из РНК, соответственно, образовались белки и ДНК , которые заменили ее в виду своей большей эффективности.

Возник другой вопрос: "Как появилась РНК?". Некоторые считают, что она самопроизвольно появилась на планете, а другие отрицают такую возможность.


6. "Простая" теория

Некоторые ученые предположили, что жизнь развилась не из сложных молекул вроде РНК, а из простых, которые взаимодействовали друг с другом. Они, возможно, находились в простых оболочках, сходных с клеточными мембранами. В результате взаимодействии этих простых молекул появились сложные , которые эффективнее вступали в реакции.


7. Панспермия

В конце концов, жизнь могла зародиться не на нашей планете, а принесена из космоса : в науке этот феномен называется панспермией. У этой теории есть вполне прочная основа: из-за космического воздействия от Марса периодически отделяются обломки камней, которые долетают и до Земли. После того, как ученые обнаружили марсианские метеориты на нашей планете, они предположили, что эти объекты и принесли с собой бактерии. Если верить им, то все мы марсиане . Другие исследователи предположили, что жизнь принесли кометы из других звездных систем. Даже если они правы, то человечество будет искать ответ на другой вопрос: "А как жизнь зародилась в космосе?".