Идеальное решение для всех технологических операций в химической и обрабатывающей промышленности. Моделирование химических реакций Моделирование химических реакций

Различные стратегии построения кинетических моделей сложных реакций

Химическая кинетика – наука о скоростях химических реакций, о динамическом поведении реакционной системы на ее пути к химическому равновесию. Эта область физической химии тесно связана с учением о механизмах химических реакций, поскольку химическая кинетика – один из методов изучения механизмов, а механизм реакции, как теперь стало ясно, есть основа построения адекватной кинетической модели.

Закончился XX век – столетие триумфального развития химической кинетики, включающего как микроуровень элементарного акта, так и макроуровень многостадийных процессов, отличающихся феноменальной сложностью механизмов. Основы химической кинетики как науки были заложены в начале века работами нобелевских лауреатов Я.Вант-Гоффа (1901 г), С.Аррениуса (1903 г), В.Оствальда (1909 г), а также М.Боденштейна. Различные аспекты теории элементарного акта были развиты Г.Эйрингом, М.Поляни, В.Г.Левичем и Р.Р.Догонадзе, лауреатами нобелевской премии К.Фукуи и Р.Хоффманом (1981 г), Г.Таубе (1983 г), Р.Маркусом (1992 г) и многими другими исследователями. Теория цепных реакций создана работами М.Боденштейна, Й.Христиансена и нобелевских лауреатов Н.Н.Семенова и С.Н.Хиншельвуда (1956 г), их учеников и последователей.

Нобелевскими премиями были отмечены методы и результаты исследований быстрых элементарных реакций (М.Эйген, Дж.Портер, Р.Норриш, 1967 г), а также разработка методов исследования динамики элементарных актов газофазных реакций (Д.Хершбах, Я.Ли, Дж.Поляни, 1986 г).

Выдающиеся результаты были получены в области кинетики гомогенных и гетерогенных каталитических реакций. Отметим лишь теорию

кинетики гетерогенных реакций на неоднородных поверхностях (М.И.Темкин и С.З.Рогинский), теорию кинетики стационарных реакций Хориути-Темкина, открытие катализа комплексами палладия окислительных превращений олефинов (И.И.Моисеев, М.Н.Варгафтик, Я.К.Сыркин, Ю.Смидт и др.) и создание И.И.Моисеевым теории этих процессов на основе детальных кинетических исследований (премия им. А.П.Карпинского, 1999 г).

Двадцатое столетие увенчалось замечательным открытием новой области физической химии элементарного акта, названной "фемтохимия", и нобелевской премией по химии 1999 г американскому ученому, египтянину А.Зевейлу (A.Zewail) "за его исследования переходных состояний методом фемтосекундной (10 –15 сек) лазерной спектроскопии". Достигнут предел измерения скоростей химических реакций. Появилась возможность следить за процессами, протекающими за время одного колебания атомов в химической связи – 10 – 100 фс. Переходное состояние ряда реакций фиксируется с разрешением 0.1 Å по координате реакции с полным спектральным портретом. Достигнут уровень разрешения соседних энергетических состояний ~10 –4 см –1 .

Все результаты изучения "неравновесной" кинетики химических реакций на микроуровне чрезвычайно важны для обоснования базовых принципов химической кинетики, но пока мало полезны для решения задач макроуровня – исследования механизмов сложных реакций в газах, растворах и на поверхности твердого тела в условиях максвелл-больцмановского распределения, т.е. задач "равновесной" кинетики химических реакций. Если задача выяснения механизмов и построения кинетических моделей сложных реакций для "равновесной" кинетики газофазных радикально-цепных реакций решается практически (вследствие возможности построения максимальных механизмов или реакционных сетей с известными константами скорости элементарных стадий), то для сложных многомаршрутных процессов в растворах и на поверхности решение этой задачи только начинается. Эта проблема XXI века.

Существует три типа математических моделей (математического описания) сложных процессов. Стохастические модели используют вероятностные представления о процессах в объекте исследования. Вычисляются функции распределения вероятностей для переменных параметров модели (концентрация, температура в случае химических процессов). Эти модели пока что редко используются в химической кинетике, но они оказались полезными для описания и моделирования поведения больших систем (химических комплексов, химических предприятий). Статистические модели используют для описания эксперимента на работающем объекте исследования. Описывается связь значений входящих в систему и выходящих из системы переменных без использования физико-химической информации о происходящих в объекте процессах (модель черного ящика). Математическим описанием поведения системы обычно являются уравнения в форме полиномов. Для обеспечения статистической независимости параметров модели используют планирование эксперимента (например, ортогональные планы эксперимента). Детерминированные модели основаны на закономерностях физико-химических процессов с определенной структурой модели. Именно такими моделями являются теоретически обоснованные кинетические модели. Детерминированным, структурным, теоретически обоснованным кинетическим моделям (КМ) химических процессов и будет посвящен данный курс лекций.

При математическом моделировании каталитического процесса существует определенная иерархия математических моделей. Модели первого уровня – кинетические модели процессов на зерне твердого катализатора или в элементарном объеме жидкой фазы в гомогенной реакции, неосложненные процессами переноса массы, тепла и гидродинамическими факторами. Модели второго уровня в гетерогенном катализе рассматривают процессы в слое катализатора, а модели третьего уровня в гомогенном и гетерогенном катализе – это модели реактора в целом, включая все процессы переноса и структуру потоков. Модели первого уровня (КМ) будут рассматриваться в настоящем курсе лекций. Такие модели нужны для исследования новых реакций, для оптимизации каталитических процессов, расчетов промышленных реакторов (как составные части математической модели реактора), для создания систем автоматизированного управления процессом.

О понятии “механизм реакций”

Итак, в основе построения КМ лежит механизм процесса, т.е. совокупность элементарных стадий, приводящая к превращению исходных реагентов в конечные продукты реакций, причем для одной и той же реакции (каталитической или некаталитической) существует некоторое конечное множество механизмов, определяемое существующим на сегодня объемом знаний и действующими в химии парадигмами.

Например, для реакции нуклеофильного замещения в ароматическом ядре ArX (некаталитической, катализируемой комплексами металлов или индуцированной переносом электронов с ArX и на ArX) установлено 8 механизмов:

Предложено 13 одномаршрутных и 80 двухмаршрутных механизмов простой реакции гидрирования этилена на металлических катализаторах. Другими словами, для каждой реакционной системы (реагенты, катализатор) существует некоторое множество элементарных стадий – реакционная сеть (максимальный механизм), отдельные блоки которой реализуются в зависимости от природы катализатора, условий, заместителей в субстрате, степени окисления металла-катализатора.

В конце столетия наметилось объединение физико-химического и формально-кинетического подходов в изучении механизмов. Был сформулирован взгляд на механизм как на единство двух составляющих этого понятия – топологической (структурной) и химической составляющих, и на их равноправие – нельзя однозначно установить структуру механизма (взаимосвязь элементарных стадий) на основе только формально-кинетического описания, так называемую "схему механизма", а потом наполнить ее химическим содержанием. Нельзя в общем случае из кинетических экспериментов получить информацию, необходимую для корректной идентификации схемы механизма, не задав этот механизм и не поставив соответствующие задачи для формально-кинетического метода.

Все эти обстоятельства вызвали необходимость пересмотра традиционной стратегии построения КМ.

Альтернативные стратегии построения КМ

Традиционная процедура построения КМ включает следующие этапы:

Главный недостаток этой процедуры (стратегии) – отсутствие алгоритмов однозначного выполнения всех этапов. Поскольку эксперимент может быть адекватно описан большим числом математических моделей (уравнений), исследователь должен иметь какую-либо гипотезу о схеме механизма (о структуре механизма) или о форме предполагаемых уравнений. При этом подбор возможных гипотез (иногда интуитивный) происходит уже после сделанного эксперимента. Нет алгоритма перехода от математической модели к физической модели (особенно для многомаршрутных реакций) (этап (б)). Переход к механизму реакции (этап (в)) также произволен и не формализован. На всех этапах этой стратегии присутствует естественное стремление получить хотя бы одно уравнение (и "схему механизма"), не противоречащее эксперименту, и, очень часто, ни о какой дискриминации набора гипотез не идет речи. Напротив, авторы такой схемы механизма начинают ставить эксперименты, чтобы доказать механизм, представляющийся автору наиболее разумным. Вместе с тем, уже давно установлено, что доказать какую-либо гипотезу нельзя. Можно доказательно отбросить неработающие гипотезы и показать согласие с экспериментом оставшихся гипотез – множества работающих гипотез. Целесообразность выдвижения набора гипотез и получение множества работающих гипотез была убедительно обоснована более 100 лет назад американским ученым-геологом Т.Чемберленом.

Таким образом, рациональная стратегия построения КМ является четкой методологически обоснованной гипотетико-дедуктивной логической схемой исследования, поддержанной возможностями компьютеров и эффективным программным обеспечением. Суть этой стратегии отражена в последовательности ее этапов:

Дискриминация гипотез может включать дискриминацию стадий, блоков стадий, отдельных механизмов, узлов сопряжения в многомаршрутных реакциях.

Вид КМ (формы математического описания) зависит от особенностей механизма (линейный или нелинейный), условий проведения процесса (стационарный, квазистационарный, нестационарный), типа реактора (открытый, закрытый) и ряда принятых допущений. Линейным механизмом называют механизм, элементарные стадии которого в прямом и обратном направлениях линейны по интермедиатам – только одно промежуточное соединение находится слева (или справа) от стрелки в элементарной стадии. Если в стадии участвует больше одного интермедиата (в том числе и 2 молекулы одного интермедиата), стадии нелинейны и механизм нелинейный.

Самым общим видом КМ являются системы дифференциальных уравнений, алгебро-дифференциальных или алгебраических уравнений

, (1)

правая часть которых всегда есть произведение матрицы стехиометрических коэффициентов для стадий механизма (транспонированной) на вектор-столбец скоростей элементарных стадий (). В случае линейных механизмов для реакции в стационарных или квазистационарных условиях правая часть уравнения (1) преобразуется в дробно-рациональные уравнения скоростей по реагентам (R i) или скоростей по маршрутам (R p). Системы алгебраических уравнений для нелинейных механизмов в общем случае не решаются, и уравнения типа (1) не приводятся к более простому дробно-рациональному виду.

В случае кинетики на неоднородных поверхностях в стационарных условиях скорость может описываться и степенным уравнением типа (2) (уравнение М.И.Темкина для синтеза аммиака):

(2)

Коэффициент m = 0.5 в случае железного катализатора, k + /k – = K – константа равновесия реакции

Особенности кинетических моделей для разных случаев, методы вывода кинетических уравнений и методы построения КМ в рамках рациональной стратегии будут рассмотрены в последующих разделах курса. Освоение традиционной стратегии – предмет домашнего задания (курсовой работы).


Вопросы для самоконтроля

1) Перечислить недостатки традиционной стратегии.

2) Методологическое обоснование рациональной стратегии.

3) Назвать основные этапы рациональной стратегии и перечислить преимущества этой стратегии на всех этапах построения КМ.

4) Назвать особенности КМ в случае линейных и нелинейных механизмов.


Литература для углубленного изучения темы

1. Шмид Р., Сапунов В.Н., Неформальная кинетика, М., Мир, 1985, 263 с (традиционная стратегия).

2. Брук Л.Г., Зейгарник А.В., Темкин О.Н., Вальдес-Перес Р., Методы выдвижения гипотез о механизмах реакций. Учебное пособие, М.: МИТХТ, 1999.

3. Темкин О.Н., Брук Л.Г., Зейгарник А.В., Некоторые аспекты стратегии изучения механизмов и построения кинетических моделей сложных реакций, Кинетика и катализ, 1993, т. 34, №3, с. 445 – 462.

4. Темкин О.Н., Проблемы кинетики сложных реакций, Росс. химический журнал, 2000, т. 44, №4, с. 58 – 65.


И катализа кафедры Химии и технологии основного органического синтеза МИТХТ им. М.В.Ломоносова. Для выдвижения гипотез о механизмах синтеза акриловой кислоты по реакции (6) в растворах комплексов палладия использовали 11 трансформаций: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. С помощью программы ChemNet получили реакционную...

Мере, синергетическим стилем мышления может быть некой платформой для открытого творческого диалога между учеными, мыслителями, деятелями искусства, имеющими различные творческие установки и взгляды на мир. 2. Некоторые парадоксальные следствия синергетики Множество новых парадоксальных идей, образов и представлений возникает в синергетике. Кроме того, с точки зрения синергетики может быть...





... ; VCH3OH=10мл; 0: 0: 0 = 5:3:2. Причины этого эффекта будут изучены в ходе дальнейших исследований. 5. Патентный поиск 5.1. Введение Данная дипломная работа посвящена изучению условий возникновения колебательного режима при окислительном карбонилировании алкинов в присутствии палладиевых катализаторов. Этот процесс представляет большой интерес, поскольку в дальнейшем позволит...



Рынке для выживания в конкурентной среде и успешного развития предприятию необходим четко разработанный план как на длительную перспективу, так и на текущий период. ГЛАВА 2. АНАЛИЗ ПОЛОЖЕНИЯ ПРЕДПРИЯТИЯ ООО «АВТОДОМ-АТЭКС» НА РЫНКЕ УСЛУГ АВТОСЕРВИСА 2.1 Краткая технико-экономическая характеристика предприятия Предприятие «Автодом–Атэкс» учреждено на основании решения участников от 23 ...

В физической химии скорость химической реакции определяется в соответствии с уравнением:

где dq – изменение массы реагирующего вещества, моль.

dt – приращение времени, с.

V – мера реакционного пространства.

Различают гомогенные химические реакции, в которых все участвующие вещества находятся в пределах одной фазы (газовой или жидкой). Для таких реакций мерой реакционного пространства является объем, а размерность скорости будет: .

Гетерогенные химические реакции происходят между веществами, находящимися в разных фазах (газ-твердое, газ-жидкость, жидкость-жидкость, твердое-жидкость). Собственно химическая реакция при этом реализуется на поверхности раздела фаз, которая и является мерой реакционного пространства.

Для гетерогенных реакций размерность скорости иная: .

Изменение массы реагирующих веществ имеет свой знак. Для исходных веществ масса по ходу реакции убывает, изменение массы имеет отрицательный знак, и величина скорости принимает отрицательное значение. Для продуктов химической реакции масса возрастает, изменение массы положительно, знак скорости принимают также положительным.

Рассмотрим простую химическую реакцию

К простым реакциям относятся те, которые осуществляются в одну стадию и идут до конца, т.е. являются необратимыми.

Определим скорость такой химической реакции. Для этого прежде всего необходимо решить, по какому из веществ будет определена скорость реакции: ведь А и В – исходные вещества, и изменение их масс отрицательно, а С является конечным продуктом, и его масса возрастает со временем. Кроме того, не все стехиометрические коэффициенты в реакции равны единице, а это значит, что если расход А за какое-то время равен 1 молю, расход В за это же время будет 2 моля, и соответственно значения скорости, рассчитанные по изменению масс А и В будут отличаться вдвое.

Для простой химической реакции можно предложить единую меру скорости, которая определяется следующим образом:

где r i – скорость по i-му участнику реакции

S i – стехиометрический коэффициент i-го участника реакции.

Стехиометрические коэффициенты для исходных веществ принимаются положительными, для продуктов реакции они отрицательны.

Если реакции идут в изолированной системе, не обменивающейся веществом с внешней средой, то только химическая реакция приводит к изменению масс вещества в системе, и, следовательно, их концентраций. В такой системе единственной причиной изменения концентраций С является химическая реакция. Для этого частного случая

Скорость химической реакции зависит от концентраций участвующих веществ и от температуры.

где k – константа скорости химической реакции, С А,С В – концентрации веществ, n 1 , n 2 – порядки по соответствующим веществам. Это выражение известно в физической химии как закон действующих масс.

Чем выше значения концентраций, тем выше скорость химической реакции.

Порядок (n ) определяется экспериментально и связан с механизмом химической реакции. Порядок может быть целым или дробным числом, существуют также реакции нулевого порядка по каким-то веществам. Если порядок по i -му веществу равен нулю, то скорость химической реакции не зависит от концентрации этого вещества.

Значение скорости химической реакции зависит от температуры. В соответствии с законом Аррениуса константа скорости изменяется при изменении температуры:

где А – предэкспоненциальный множитель;

Е – энергия активации;

R – универсальная газовая постоянная, константа;

Т – температура.

Как и величина порядка реакции, величины энергии активации и предэкспоненциального множителя определяются для конкретной реакции экспериментально.

Если химическая реакция осуществляется в гетерогенном процессе, то на её скорость оказывает влияние так же процесс подвода исходных веществ и отвода продуктов из зоны химической реакции. Таким образом, имеет место сложный процесс, в котором имеются диффузионные стадии (подвод, отвод) и кинетическая стадия – собственно химическая реакция. Скорость всего процесса в целом, наблюдаемого в эксперименте, определяется скоростью самой медленной стадии.

Таким образом, влияя на скорость диффузионной стадии процесса (перемешивание), влияем на скорость всего процесса в целом. Это влияние сказывается на величине предэкспоненциального множителя А.

Большинство химических реакций не являются простыми (т.е. идут не в одну стадию и не до конца) – сложные химические реакции:

а) AB – обратимые;

б) А→В; В→С – последовательные;

в) А→В; А→С – параллельные.

Для сложной химической реакции нет единой меры скорости . В отличие от простой, здесь можно говорить о скорости образования и разрушения каждого химического вещества. Таким образом, если в системе происходят химические реакции и участвуют n веществ, для каждого из n веществ есть своё значение скорости.

Для любого из веществ скорость образования и разрушения является алгебраической суммой скоростей всех стадий с участием этого вещества.


Введение

В кратком изложении суть представленных в настоящей работе проблем состоит в следующем. Развитие химии тесно связано с построением математических моделей. Можно сказать, что это одна из наиболее распространенных и информационно емких форм количественного представления данных эксперимента. Одна формула или значение коэффициента в ней может квалифицированно представлять результаты многочисленных экспериментов.
Цели моделирования в химии бывают различными, от построения эмпирических зависимостей без ограничений на параметры и до количественной проверки теоретических положений, для которой как форма модели, так и значения ее параметров должны соответствовать физико-химическому смыслу этих положений.
В нашей работе ставятся следующие задачи:
- рассмотреть основы кинетики химических реакций на примере гомогенных
- примеры моделирования кинетических уравнений на примере гомогенных реакций
- рассмотреть численный метод Эйлера
- исследовать математическую модель протекания гомогенных реакций
- разобрать типы моделей сложных реакций

1 История химической кинетики

Химическая кинетика – наука о скоростях химических реакций, о динамическом поведении реакционной системы на ее пути к химическому равновесию. Эта область физической химии тесно связана с учением о механизмах химических реакций, поскольку химическая кинетика – один из методов изучения механизмов, а механизм реакции, как теперь стало ясно, есть основа построения адекватной кинетической модели.
Закончился XX век – столетие триумфального развития химической кинетики, включающего как микроуровень элементарного акта, так и макроуровень многостадийных процессов, отличающихся феноменальной сложностью механизмов. Основы химической кинетики как науки были заложены в начале века работами нобелевских лауреатов Я.Вант-Гоффа (1901 г), С.Аррениуса (1903 г), В.Оствальда (1909 г), а также М.Боденштейна. Различные аспекты теории элементарного акта были развиты Г.Эйрингом, М.Поляни, В.Г.Левичем и Р.Р.Догонадзе, лауреатами нобелевской премии К.Фукуи и Р.Хоффманом (1981 г), Г.Таубе (1983 г), Р.Маркусом (1992 г) и многими другими исследователями. Теория цепных реакций создана работами М.Боденштейна, Й.Христиансена и нобелевских лауреатов Н.Н.Семенова и С.Н.Хиншельвуда (1956 г), их учеников и последователей.
Нобелевскими премиями были отмечены методы и результаты исследований быстрых элементарных реакций (М.Эйген, Дж.Портер, Р.Норриш, 1967 г), а также разработка методов исследования динамики элементарных актов газофазных реакций (Д.Хершбах, Я.Ли, Дж.Поляни, 1986 г).
Выдающиеся результаты были получены в области кинетики гомогенных и гетерогенных каталитических реакций. Отметим лишь теорию
кинетики гетерогенных реакций на неоднородных поверхностях (М.И.Темкин и С.З.Рогинский), теорию кинетики стационарных реакций Хориути-Темкина, открытие катализа комплексами палладия окислительных превращений олефинов (И.И.Моисеев, М.Н.Варгафтик, Я.К.Сыркин, Ю.Смидт и др.) и создание И.И.Моисеевым теории этих процессов на основе детальных кинетических исследований (премия им. А.П.Карпинского, 1999 г).
Двадцатое столетие увенчалось замечательным открытием новой области физической химии элементарного акта, названной "фемтохимия", и нобелевской премией по химии 1999 г американскому ученому, египтянину А.Зевейлу (A.Zewail) "за его исследования переходных состояний методом фемтосекундной (10–15 сек) лазерной спектроскопии". Достигнут предел измерения скоростей химических реакций. Появилась возможность следить за процессами, протекающими за время одного колебания атомов в химической связи – 10 – 100 фс. Переходное состояние ряда реакций фиксируется с разрешением 0.1 A по координате реакции с полным спектральным портретом. Достигнут уровень разрешения соседних энергетических состояний ~10–4 см–1.
Все результаты изучения "неравновесной" кинетики химических реакций на микроуровне чрезвычайно важны для обоснования базовых принципов химической кинетики, но пока мало полезны для решения задач макроуровня – исследования механизмов сложных реакций в газах, растворах и на поверхности твердого тела в условиях максвелл-больцмановского распределения, т.е. задач "равновесной" кинетики химических реакций. Если задача выяснения механизмов и построения кинетических моделей сложных реакций для "равновесной" кинетики газофазных радикально-цепных реакций решается практически (вследствие возможности построения максимальных механизмов или реакционных сетей с известными константами скорости элементарных стадий), то для сложных многомаршрутных процессов в растворах и на поверхности решение этой задачи только начинается. Эта проблема XXI века.

2 Кинетика гомогенных химических реакций

Скорость химической реакции есть изменение числа молей реагентов в результате химического взаимодействия в единицу времени в единице объема (для гомогенных реакций) или на единице поверхности (для гетерогенных процессов) :
где С- концентрация, моль/м 3 ,
или
Одним из основных законов химической кинетики, определяющим количественные закономерности скоростей элементарных реакций, является закон действующих масс.
Согласно кинетическому закону действующих масс скорость элементарной реакции при заданной температуре пропорциональна произведению концентраций реагирующих веществ в степени, показывающей число вступающих во взаимодействие частиц (стехиометрических коэффициентов):
где - предэкспоненциальный множитель; E - энергия активации, ;
Т – температура, К; R - газовая постоянная, .
Константы скорости реакций различного порядка имеют разную размерность. Константа скорости реакций первого порядка (мономолекулярных) имеет размерность с -1 , константа скорости второго порядка (бимолекулярных) – л/(моль*с).
На основании уравнений (4) и (5) можно записать:

        = (6а)
Уравнение, отражающее изменение концентрации какого-либо вещества во времени в ходе химического превращения называется кинетическим уравнением.
Кинетические уравнения связывают скорость реакции с параметрами, от которых она зависит. Наиболее важными из этих параметров являются концентрация, температура, давление, активность катализатора.
Рассмотрим гомогенную реакцию,
Между скоростями реакции по отдельным компонентам (обозначим их W A , W B , W C , W D) и общей скоростью реакции W существует зависимость
Чтобы применить закон действующих масс для сложной химической реакции, необходимо представить ее в виде элементарных стадий и применить этот закон к каждой стадии отдельно.

3 Примеры моделирования кинетических уравнений гомогенных химических реакций

Таким образом, кинетические модели гомогенных химических реакций представляют системы обыкновенных дифференциальных уравнений материального баланса.
В результате решения системы дифференциальных уравнений получим зависимости изменения концентраций химических реагентов во времени.
    4 Численные методы решения кинетических уравнений
При решении обыкновенных дифференциальных уравнений часто пользуются численными методами, основанными на разложении искомой функции в ряд Тейлора.
Простейшим численным методом решения обыкновенных дифференциальных уравнений является метод Эйлера. В основе этого метода лежит аппроксимация производной при малых изменениях аргумента.
Основная формула метода Эйлера имеет следующий вид
, (11)
где у i+1 – значение искомой переменной на последующем шаге;
у i – значение искомой переменной на текущем шаге;
f i – правые части дифференциального уравнения;
h – шаг интегрирования.
Например, скорость химической реакции описывается уравнением
величину называют шагом интегрирования. Решая уравнение (14), получим общую формулу Эйлера
, (15)
где (правая часть дифференциального уравнения);
.
Задав начальные условия: при t=0, С=С 0 , величину шага интегрирования h, а также параметры уравнения, с помощью формулы (15) можно провести пошаговый расчёт и получить решение данного уравнения (рисунок 1).
Приведем пример интегрирования первого шага системы уравнений (13) по методу Эйлера:
С А1 (t 1)= С А0 (t 0) +h· (-k·C A);
С B1 (t 1)= С B0 (t 0) +h· (k·C A);
Результаты первого шага зависят от начальной концентрации реагирующих веществ (С А0 и С B0) и величины шага h.
Организуя циклические вычисления по уравнению (15), получим для кинетической модели изменение концентраций реагирующих веществ от времени.
Величина шага интегрирования выбирается исходя из достижения минимального времени счёта и наименьшей ошибки вычислений.

Рисунок 1. Графическая иллюстрация метода Эйлера

5 Исследование кинетики гомогенных химических реакций

Исследование кинетических закономерностей протекания химической реакции методом математического моделирования заключается в определении изменения концентраций реагирующих веществ во времени при заданной температуре.
Пусть протекают химические реакции
k 1 k 2
A ® B +2C ® D.
На основании закона действующих масс запишем уравнения скоростей химических реакций и составим кинетическую модель:


; ;
;
;
,
где С А, С В, С С - концентрации веществ, моль/л;
k i - константа скорости i-й химической реакции первого порядка, с -1 ; (для реакций второго порядка размерность константы ; для реакций третьего порядка размерность константы). W i - скорость i-й химической реакции, моль/л ? с; t - время реакции, с.
Систему обыкновенных дифференциальных уравнений первого порядка можно решить с использованием численного метода Эйлера, алгоритм которого записывается по уравнению (15).
Блок-схема расчета кинетики гомогенной химической реакции методом Эйлера приведена на рисунке 2.
Результаты исследования на математической модели влияния температуры на степень превращения исходного реагента и на концентрацию веществ представлены на рисунках 3,4.
Полученные результаты позволяют сделать вывод об оптимальном времени проведения процесса с целью получения целевого продукта. Математическая модель также позволяет исследовать влияние состава сырья на выход продуктов реакции.
Необходимо учитывать, что скорость химической реакции зависит от температуры, поэтому, чтобы использовать кинетическую модель для исследования процесса при различных температурах, необходимо ввести зависимость константы скорости химической реакции от температуры по уравнению Аррениуса.

Рисунок 2. Блок - схема расчета кинетики гомогенной химической
реакции методом Эйлера

6 Типы моделей математического описания сложных процессов
Существует три типа математических моделей (математического описания) сложных процессов. Стохастические модели используют вероятностные представления о процессах в объекте исследования. Вычисляются функции распределения вероятностей для переменных параметров модели (концентрация, температура в случае химических процессов). Эти модели пока что редко используются в химической кинетике, но они оказались полезными для описания и моделирования поведения больших систем (химических комплексов, химических предприятий). Статистические модели используют для описания эксперимента на работающем объекте исследования. Описывается связь значений входящих в систему и выходящих из системы переменных без использования физико- химической информации о происходящих в объекте процессах (модель черного ящика). Математическим описанием поведения системы обычно являются уравнения в форме полиномов. Для обеспечения статистической независимости параметров модели используют планирование эксперимента (например, ортогональные планы эксперимента). Детерминированные модели основаны на закономерностях физико-химических процессов с определенной структурой модели. Именно такими моделями являются теоретически обоснованные кинетические модели.
При математическом моделировании каталитического процесса существует определенная иерархия математических моделей. Модели первого уровня – кинетические модели процессов на зерне твердого катализатора или в элементарном объеме жидкой фазы в гомогенной реакции, неосложненные процессами переноса массы, тепла и гидродинамическими факторами. Модели второго уровня в гетерогенном катализе рассматривают процессы в слое катализатора, а модели третьего уровня в гомогенном и гетерогенном катализе – это модели реактора в целом, включая все процессы переноса и структуру потоков. Такие модели нужны для исследования новых реакций, для оптимизации каталитических процессов, расчетов промышленных реакторов (как составные части математической модели реактора), для создания систем автоматизированного управления процессом.

7 О понятии “механизм реакций”

Итак, в основе построения КМ лежит механизм процесса, т.е. совокупность элементарных стадий, приводящая к превращению исходных реагентов в конечные продукты реакций, причем для одной и той же реакции (каталитической или некаталитической) существует некоторое конечное множество механизмов, определяемое существующим на сегодня объемом знаний и действующими в химии парадигмами.
Например, для реакции нуклеофильного замещения в ароматическом ядре ArX (некаталитической, катализируемой комплексами металлов или индуцированной переносом электронов с ArX и на ArX) установлено 8 механизмов:








Предложено 13 одномаршрутных и 80 двухмаршрутных механизмов простой реакции гидрирования этилена на металлических катализаторах. Другими словами, для каждой реакционной системы (реагенты, катализатор) существует некоторое множество элементарных стадий – реакционная сеть (максимальный механизм), отдельные блоки которой реализуются в зависимости от природы катализатора, условий, заместителей в субстрате, степени окисления металла-катализатора.
В конце столетия наметилось объединение физико-химического и формально-кинетического подходов в изучении механизмов. Был сформулирован взгляд на механизм как на единство двух составляющих этого понятия – топологической (структурной) и химической составляющих, и на их равноправие – нельзя однозначно установить структуру механизма (взаимосвязь элементарных стадий) на основе только формально-кинетического описания, так называемую "схему механизма", а потом наполнить ее химическим содержанием. Нельзя в общем случае из кинетических экспериментов получить информацию, необходимую для корректной идентификации схемы механизма, не задав этот механизм и не поставив соответствующие задачи для формально-кинетического метода.
Все эти обстоятельства вызвали необходимость пересмотра традиционной стратегии построения КМ.

8 Альтернативные стратегии моделирования КМ

Традиционная процедура построения КМ включает следующие этапы:

Главный недостаток этой процедуры (стратегии) – отсутствие алгоритмов однозначного выполнения всех этапов. Поскольку эксперимент может быть адекватно описан большим числом математических моделей (уравнений), исследователь должен иметь какую-либо гипотезу о схеме механизма (о структуре механизма) или о форме предполагаемых уравнений. При этом подбор возможных гипотез (иногда интуитивный) происходит уже после сделанного эксперимента. Нет алгоритма перехода от математической модели к физической модели (особенно для многомаршрутных реакций) (этап (б)). Переход к механизму реакции (этап (в)) также произволен и не формализован. На всех этапах этой стратегии присутствует естественное стремление получить хотя бы одно уравнение (и "схему механизма"), не противоречащее эксперименту, и, очень часто, ни о какой дискриминации набора гипотез не идет речи. Напротив, авторы такой схемы механизма начинают ставить эксперименты, чтобы доказать механизм, представляющийся автору наиболее разумным. Вместе с тем, уже давно установлено, что доказать какую-либо гипотезу нельзя. Можно доказательно отбросить неработающие гипотезы и показать согласие с экспериментом оставшихся гипотез – множества работающих гипотез. Целесообразность выдвижения набора гипотез и получение множества работающих гипотез была убедительно обоснована более 100 лет назад американским ученым-геологом Т.Чемберленом.
Таким образом, рациональная стратегия построения КМ является четкой методологически обоснованной гипотетико-дедуктивной логической схемой исследования, поддержанной возможностями компьютеров и эффективным программным обеспечением. Суть этой стратегии отражена в последовательности ее этапов:

Дискриминация гипотез может включать дискриминацию стадий, блоков стадий, отдельных механизмов, узлов сопряжения в многомаршрутных реакциях.
Вид КМ (формы математического описания) зависит от особенностей механизма (линейный или нелинейный), условий проведения процесса (стационарный, квазистационарный, нестационарный), типа реактора (открытый, закрытый) и ряда принятых допущений. Линейным механизмом называют механизм, элементарные стадии которого в прямом и обратном направлениях линейны по интермедиатам – только одно промежуточное соединение находится слева (или справа) от стрелки в элементарной стадии. Если в стадии участвует больше одного интермедиата (в том числе и 2 молекулы одного интермедиата), стадии нелинейны и механизм нелинейный.
Самым общим видом КМ являются системы дифференциальных уравнений, алгебро-дифференциальных или алгебраических уравнений
, (16)
правая часть которых всегда есть произведение матрицы стехиометрических коэффициентов для стадий механизма (транспонированной) на вектор-столбец скоростей элементарных стадий (). В случае линейных механизмов для реакции в стационарных или квазистационарных условиях правая часть уравнения (1) преобразуется в дробно-рациональные уравнения скоростей по реагентам (R i ) или скоростей по маршрутам (R p ). Системы алгебраических уравнений для нелинейных механизмов в общем случае не решаются, и уравнения типа (16) не приводятся к более простому дробно-рациональному виду.
В случае кинетики на неоднородных поверхностях в стационарных условиях скорость может описываться и степенным уравнением типа (17) (уравнение М.И.Темкина для синтеза аммиака):
(17)
Коэффициент m = 0.5 в случае железного катализатора, k + /k – = K – константа равновесия реакции

Под прямой задачей химической кинетики понимают задачу нахождения концентраций участвующих в реакции веществ в любой момент времени, исходя из известных начальных концентраций, схемы реакции и констант скоростей отдельных стадий. Обратная задача химической кинетики - восстановление поизвестной зависимости концентрации веществ от времени схемы реакции и констант скорости.

9.1 Классификация обратных задач

Формальная кинетика гомогенных химических реакций основана на двух основныхпостулатах. Согласно (кинетическому) закону действия масс скорость элементарной стадии пропорциональна концентрации участвующих в ней реагентов.
Коэффициент пропорциональности и называется константой скорости. Согласно принципу независимого протекания отдельных стадий скорость реакции не зависитот протекания в данный момент в системе других химических реакций. Такимобразом, зная схему реакции, легко записать систему обыкновенных дифференциальных уравнений, отражающую изменение концентрации всехучаствующих в реакции веществ во времени:
d c/dt = f (k, c) (18)
где с - вектор концентраций веществ, k - вектор констант скоростей отдельных стадий, вид функции f определяется схемой реакции.
Интегрируя эту систему аналитически либо численно, получаем:
с = F(k, c 0 , t ) (19)
где с 0 - вектор начальных концентраций веществ.
Пользуясь введенными выше обозначениями, можно выделить несколько ступеней в решении обратной задачи.
Нулевая ступень - проверка адекватности. На ней дается ответ на вопрос, соответствуют ли экспериментально наблюдаемые кривые c(t) рассчитанным с использованием текущей модели f и констант k.
Первая ступень - параметрическая идентификация. На этой ступени
находится набор констант k, наилучшим образом описывающий экспериментальные кривые c (t ) в рамках данной модели f . Понятно, что успешное решение задачи первой ступени возможно, только опираясь на нулевую ступень.
Вторая ступень - структурная идентификация. Выбор модели f , соответствующей действительно происходящей химической реакции, который делается на основе решения задачи первой ступени с привлечением других сведений о механизме данной реакции.
.
9.2 Проверка адекватности и параметрическая идентификация

В случае достаточно простой схемы реакции, когда возможно получение функции c (t ) в явном виде, проверка адекватности сводится к вычислению теоретических значений функции при различных значениях времени и сравнении их с экспериментальными. К сожалению, часто системы дифференциальных уравнений, описывающие сложные химические реакции, не могут быть проинтегрированы в аналитическом виде, и приходится прибегать к численным методам интегрирования.
и т.д.................

Математическое описание перечисленных выше физико-химических процессов имеет большое значение при создании динамических моделей, воспроизводящих поведение процессов во времени. Такие модели позволяют прогнозировать будущее состояние процесса, определять оптимальные траектории его протекания, а следовательно, и пути повышения производительности или экономичности. При этом открывается также возможность автоматизации управления с использованием ЭВМ.

Особенности кинетики гомогенных и гетерогенных реакций

Скорости протекания химических реакций зависят от целого ряда факторов: концентрации реагирующих веществ, температуры, давления (если в реакции участвуют газообразные вещества), наличия катализаторов, а в случае гетерогенных превращений, кроме того – от состояния поверхности, условий тепло- и массообмена. Рассмотрим, в связи с этим, особенности кинетики гомогенных и гетерогенных реакций. При гомогенных реакциях исходные вещества и продукты взаимодействия находятся в одной и той же фазе (газовой или жидкой), при этом молекулы, атомы или ионы могут взаимодействовать по всему занятому объему. Примером могут служить реакции горения и , входящих в состав коксового (природного) газа:

При гетерогенных реакциях взаимодействующие вещества находятся в различных фазах, а процесс химического превращения протекает на границе раздела этих фаз.

Реакция окисления углерода в системе шлак-металл, как пример гетерогенной реакции

Реакция

Примером может служить реакция окисления углерода в системе шлак – металл применительно к ванне мартеновской или электросталеплавильной печи

Три стадии реакции

Здесь можно выделить, по меньшей мере, три стадии:

  1. диффузия кислорода из шлака в металл к месту реакции (граница раздела: металл – газовый пузырь, незаполненные поры на подине или поверхности кусков руды и извести);
  2. химическая реакция между кислородом и углеродом металла на границе раздела упомянутых фаз;
  3. выделение газообразного продукта реакции из металла.

Следует заметить, что при более подробном анализе каждая из перечисленных стадий может быть разбита еще на несколько стадий, отражающих, в частности, адсорбционно-химические акты на границах раздела фаз (см. рис.1.3 – 1.5). Скорость такой сложной гетерогенной реакции лимитируется наиболее медленной стадией процесса. Для условий мартеновского и электросталеплавильного процессов такой стадией является диффузия кислорода из шлака в металл. В конвертерном процессе в связи с большой интенсивностью продувки кислородом и высокой степенью диспергирования взаимодействующих фаз лимитирующими могут оказаться адсорбционно-химические акты на поверхности раздела фаз, величина которой возрастает на несколько порядков по сравнению с подовыми сталеплавильными процессами.

Описание диффузии и массопереноса

Диффузия

Прежде чем продолжить описание кинетики, остановимся на закономерностях диффузии, которая имеет большое значение при гетерогенных процессах, так как их скорости могут определяться подводом реагирующих веществ и отводом продуктов реакции.

Диффузия есть процесс самопроизвольного перемещения вещества, направленный на выравнивание концентраций в объеме. Движущейся силой диффузии является градиент концентрации , определяемый изменением концентрации вещества , приходящегося на отрезок пути в направлении диффузии. Приращение количества переносимого путем диффузии вещества пропорционально коэффициенту диффузии , градиенту концентрации, площади поперечного сечения среды, через которую переносится вещество, и времени .

а переходя к бесконечно малым приращениям и скорости диффузии (потоку массы через единичную площадь)

получаем уравнение

(3.57) описывающее стационарную диффузию и называемое первым законом Фика.

Диффузия системы с распределёнными параметрами позакон Фика

Для случая системы с распределенными параметрами, когда концентрация изменяется по всем трем координатам, в соответствии со вторым законом Фика уравнение диффузии принимает следующий вид:

(3.58) где – плотность источников вещества, например, количество вещества, образующегося в результате химических реакций в единице объема в единицу времени.

Условия применимости молекулярной диффузии

Необходимо подчеркнуть, что уравнения (3.57) и (3.58) относятся к молекулярному переносу в неподвижной среде и справедливы для изотермического процесса и случая, когда диффузия данного компонента не зависит от диффузии других компонентов.

Формула Стокса-Эйнштейна

В этих условиях зависимость коэффициента диффузии от температуры , вязкости среды и радиуса диффундирующих молекул определяется формулой Стокса – Эйнштейна:

(3.59) где

И – газовая постоянная и число Авогадро.

Турбулентная диффузия

В большинстве металлургических агрегатов, особенно сталеплавильных, преобладающую роль играет не молекулярная, а турбулентнаядиффузия , обусловленная тепловой конвекцией и работой перемешивания поднимающихся пузырей и внедряющихся в ванну струй продувочного газа.

Например, значение коэффициента атомарной диффузии в неподвижном расплавленном железе при 1500 – 1600°C составляет – . Величина же коэффициента турбулентной диффузии в мартеновской ванне, зависящая от скорости обезуглероживания, составляет 0,0025 -0,0082 , а в конвертерном процессе 2,0 -2,5, т. е. на три порядка выше.

Диффузия с учетом влияния конвекции

С учетом влияния конвекции уравнение диффузии принимает следующий вид:

(3.60) где – скорость переноса вещества, м/с.

Чаще, в случаях преобладающего влияния турбулентной диффузии, используется эмпирическое уравнение вида

– диффузионный поток;

– разность концентраций;

– коэффициент массоотдачи (турбулентной диффузии).

Эмпирическое уравнение для турбулентной диффузии

При оценке условий массопереноса и возможных областей использования приведенных выше уравнений целесообразно воспользоваться методами теории подобия , которая, как показано при анализе второй теоремыподобия , открывает возможность обобщений.

Прежде всего, следует заметить, что диффузия , вязкость и теплопроводность являются подобными процессами, характеризующими аналогичные виды переноса: диффузия – перенос массы, вязкость – перенос количества движения, теплопроводность – перенос тепла. Коэффициенты молекулярного переноса (вязкость , диффузия и температуропроводность ) имеют одинаковую размерность ().

Число Рейнольдса

В соответствии со второй теоремой подобия можно существенно снизить размерность задачи и повысить общность, если от первичных физических параметров перейти к их безразмерным комплексам, называемым критериями или числами подобия . Одним из таких широко известных критериев является число Рейнольдса , позволяющее оценивать характер движения жидкости в зависимости от ее средней скорости , диаметра трубопровода (потока) и кинематической вязкости :

(3.62) Этот критерий является мерой отношения сил инерции, характеризующихся скоростью, к силам внутреннего трения, характеризующихся вязкостью. Число Рейнольдса отражает степень устойчивости потока по отношению к внешним и внутренним возмущениям. Значение числа, при котором нарушается устойчивость движения жидкости, называется критическим и обозначается . При любые возникающие в потоке возмущения с течением времени затухают и не изменяют общего ламинарного характера течения. При возмущения могут самопроизвольно возрастать, что приводит к турбулизации потока. В действительности, резкой границы в переходе от ламинарного к турбулентному движению нет, имеется переходный режим, при котором в основной части потока преобладает турбулентный режим, а в слое, прилегающем к стенкам, возможно ламинарное движение.

При значении <2300 поток является ламинарным. В этой области для описания диффузии могут использоваться уравнения (3.57) или (3.60). Область значений 2300<<10000 является переходной. Здесь, в зависимости от степени развития турбулентности и наличия ламинарного слоя, целесообразно использовать уравнения (3.60) или (3.61).

При значениях >10000 в результате преобладающего влияния сил инерции поток становится турбулентным. В этих условиях пользоваться уравнениями, в которых фигурируют коэффициенты молекулярной диффузии, неправомерно. При таком характере потока для описания массопереноса используют уравнения вида (3.61), в которых коэффициент массоотдачи определяется либо через работу перемешивания, либо экспериментально -статистическими методами по измеренной скорости процесса и перепадам концентраций.

Уравнения кинетики гомогенных реакций

Скорость реакции

Скорость реакции представляет собой производную от концентрации по времени

Молекулярность реакции

Химические реакции различаются по признаку молекулярности и порядка реакции. Молекулярность определяется числом молекул, участвующих в элементарном акте химического взаимодействия. По этому признаку реакции делятся на моно-, би- и тримолекулярные. Каждому типу химической реакции соответствуют определенные кинетические уравнения, выражающие зависимость скорости реакции от концентрации реагирующих веществ. В соответствии с закономерностями формальной кинетики, в том числе законом действующих масс, скорость какой-либо реакции вида

В прямом направлении пропорциональна концентрациям реагирующих веществ и представляется уравнением

(3.63) где

– константа скорости, имеющая смысл при .

Порядок реакции

Определение

Порядком реакции называется сумма показателей степени, в которых концентрации входят в кинетические уравнения. Приведенная выше реакция имеет, следовательно, третий порядок. В действительности реакции третьего порядка наблюдаются редко. Уравнения, подобные выражению (3.63), основаны на упрощенных представлениях о том, что реакции происходят при одновременном столкновении такого числа молекул, которые соответствуют сумме стехиометрических коэффициентов. Большинство же реальных реакций протекает по более сложным законам с образованием промежуточных продуктов. Поэтому уравнения типа (3.63) верны только для элементарных реакций, идущих в одну стадию, т. е. по виду стехиометрического уравнения нельзя определить порядок реакций, чаще всего его определяют экспериментально . С этой целью находят скорость реакции при постоянной температуре в зависимости от концентрации реагентов, по виду полученной зависимости (показателям степеней при концентрациях) можно судить о порядке реакции. Для этой цели можно воспользоваться одним из методов параметрической идентификации, рассматриваемых в гл. 5.

Остановимся на виде кинетических уравнений в зависимости от порядка реакции.

Реакция нулевого порядка

При реакциях нулевого порядка скорость постоянна во времени

(3.64) После интегрирования получаем

– постоянная интегрирования, имеющая смысл начальной концентрации при =0.

Таким образом, в рассматриваемом случае концентрация реагента линейно убывает во времени.

Реакция первого порядка

Реакция первого порядка схематически представляется следующим образом:

Кинетическое уравнение имеет вид:

(3.65) а его решение

показывает, что концентрация исходного компонента экспоненциально уменьшается во времени (рис. 3.2).

Рис. 3.2 Изменение концентрации и ее логарифма во времени при реакциях первого порядка

Решение этого уравнения можно представить и в другом виде, более удобном для определения константы скорости реакции. В результате разделения переменных и выбора пределов интегрирования

При температуре

получаем решение

из которого можно выделить, что линейно зависит от времени. Если опытные данные укладываются на прямую линию (см. рис. 3.2), то это указывает на первый порядок реакции. По углу наклона прямой определяется величина .

Реакция второго порядка

Схема реакции второго порядка имеет вид

Или, например,

А скорость реакции описывается уравнением

(3.66) которое при одинаковых концентрациях принимает вид

После разделения переменных и интегрирования соотношения

получаем соотношение

(3.67) которое может быть использовано для определения . Если начальные концентрации реагентов неодинаковы и равны соответственно и, а концентрация продукта в момент составляет , то получаем уравнение

Логарифмирование которого дает

(3.68)

Обратная реакция

Все приведенные выше кинетические уравнения относятся к реакциям, протекающим только в прямом направлении, т. е. в условиях, далеких от равновесия, что может, например, обеспечиваться за счет непрерывного отвода продуктов реакции. В общем случае может протекать и обратная реакция, тогда общая скорость для реакции вида

(3.69) По мере расходования реагентов и и образования продукта скорость прямой реакции уменьшается, а увеличивается. При суммарная скорость равна нулю, наступает равновесие. Тогда

или

(3.70) т. е. константа равновесия равна отношению констант скоростей прямой и обратной реакции. В то же время соотношение (3.70) есть не что иное, как выражение закона действующих масс , полученное в данном случае через уравнение кинетики.

Влияние температуры на скорость химической реакции

Остановимся теперь на вопросе влияния температуры на скорость химических реакций. Зависимость константы скорости реакции от температуры впервые была эмпирически получена Аррениусом, а несколько позже нашла теоретическое подтверждение на основе механизма активных столкновений. В дифференциальной форме она имеет следующий вид:

– энергия активации.

После интегрирования, при условии, что , получаем

– постоянная, имеющая смысл логарифма константы скорости при бесконечной температуре ().

Это соотношение можно представить также в виде

(3.73)

Энергия активации

Величину можно определить по тангенсу угла наклона прямой (3.72), построенной в координатах , для чего необходимо измерить константы скорости при различных температурах.

Физический смысл энергии активации и механизм химических реакций можно объяснить на основе теории активных столкновений.

Вероятность осуществления элементарной химической реакции зависит от природы реагирующих веществ (энергии связей) и от температуры, повышающей общий энергетический уровень хаотического движения молекул. На рис 3.3, где и – энергии активации прямой и обратной реакций, видно, что в результате экзотермической реакции, происходит снижение внутренней энергии системы на величину, равную тепловому эффекту реакции.

Рис. 3.3 К вопросу об энергии активации

Однако, на пути от исходного состояния в конечное система должна перейти определенный энергетический барьер, при этом, чем ниже барьер (меньше энергия активации), тем большая доля молекул в каждый данный момент оказывается способной вступить в реакцию и тем более высокой будет скорость реакции.

Более подробное изложение молекулярной кинетики, нашедшее дальнейшее развитие в теории переходного состояния, выходит за рамки данного пособия.

Взаимосвязь массопереноса и кинетики в гетерогенных реакциях

Наглядное представление о взаимосвязях массопереноса и кинетики в гетерогенных процессах дает приведенная на рис.3.4 схема обобщенной модели.

Поверхности раздела фаз

В первом случае процессы не сопровождаются изменениями химического состава в пограничном слое. Взаимодействие же на поверхности раздела многокомпонентных систем характеризуется, чаще всего, изменением состава пограничного слоя, при этом общая скорость процесса определяется скоростью выравнивания концентрации в пограничном слое, т. е. скоростью диффузии. Диффузионный пограничный слой представляет собой тонкий слой, прилегающий к каждой фазе двух- или многокомпонентной системы (рис. 3.6).

Рис. 3.6 Диффузионный пограничный слой

  1. – твердое вещество
  2. – диффузионный пограничный слой
  3. – жидкость

С увеличением интенсивности перемешивания уменьшается толщина этого слоя и, следовательно, уменьшается влияние диффузии на скорость всего процесса. Подобные явления наблюдаются при растворении кусков кокса и агломерата в доменных печах или кусков извести в сталеплавильных агрегатах.

В системах , для которых характерно последовательное протекание химических и физических процессов, скорость всего процесса определяется более медленной стадией. В связи с этим реакция может находиться в кинетической или в диффузионной области. Если скорость химической реакции и диффузии соизмеримы, процесс является сложной функцией кинетических и диффузионных явлений и считается протекающим в переходной области.

Стадии гетерогенных реакций

В большинстве случаев гетерогенные реакции протекают через ряд стадий, наиболее характерные из которых следующие:

  1. диффузия частиц исходных веществ к поверхности раздела фаз (реакционной зоне);
  2. адсорбция реагентов на поверхности;
  3. химическая реакция на поверхности;
  4. десорбция продуктов реакции на поверхности раздела фаз;
  5. диффузия этих продуктов от реакционной зоны вглубь одной из фаз.

Стадии 1 и 5 относятся к диффузионным, а стадии 2 – 4 к кинетическим.

Кинетическое сопротивление гетерогенной реакции

Наблюдаемое кинетическое сопротивление гетерогенной реакции, протекающей через ряд последовательных стадий, равно сумме кинетических сопротивлений ее стадий

(3.74) где

– константа скорости суммарного (наблюдаемого) процесса;

– константа скорости кинетической стадии;

– константа скорости (коэффициент диффузии) диффузионной стадии.

Стадия, имеющая наибольшее сопротивление, является лимитирующей.

Особенности процессов в кинетической области

Рассмотрим основные особенности процессов в кинетической области:

Первые три особенности могут наблюдаться и в случае нахождения процесса в переходной области. Четвертый признак является основным экспериментальным подтверждением нахождения процесса в кинетической области.

Особенности процессов в диффузионной области

Основные особенности процессов в диффузионной области:

  1. процесс первого порядка;
  2. слабая зависимость скорости процесса от температуры и от величины поверхности раздела фаз;
  3. 3) резкое влияние на скорость процесса гидродинамических и аэродинамических условий процесса.

Наиболее важным признаком нахождения процесса в диффузионной области являются первая и третья особенности.

Растворение извести как пример гетерогенного процесса

Рассмотрим в качестве примера процесс растворения извести в основном сталеплавильном шлаке, что имеет место в мартеновских, электросталеплавильных печах и конвертерах. Этот процесс, являющийся типично гетерогенным, зависит, прежде всего, от конвективных потоков, развивающихся в ванне, т. е. от мощности перемешивания, и состоит из следующих этапов: подвод составляющих шлака (, и др.) к поверхности кусков извести; проникновение растворителей в поры кусков извести, что облегчает переход оксида кальция в жидкую фазу в связи с образованием легкоплавких соединений; отвод этих продуктов, насыщенных , от поверхности кусков извести в объеме шлака. Подвод растворителей к поверхности кусков извести и отвод растворяющейся определяется закономерностями конвективной диффузии в пределах диффузионного пограничного слоя у поверхности кусков извести. Уравнение диффузии имеет вид.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Моделирование кинетики гомогенных химических реакций

Этапы развития химической кинетики

Химическая кинетика как наука о скоростях химических реакций начала формироваться в 50-70 гг. XIX в.

В 1862-1867 гг. норвежские ученые Гульдберг и Вааге дали начальную формулировку закона действующих масс : при протекании химической реакции:

Концентрация i-го вещества, ;

Константа скорости;

Стехиометрические коэффициенты.

Химическая кинетика в полной мере была сформулирована в работах Вант-Гоффа и Аррениуса в 80-х гг. XIX в.; был разъяснен смысл порядков реакций и введено понятие энергии активации. Вант-Гофф ввел понятия моно-, би- и полимолекулярных реакций:

где n - порядок реакции.

Вант-Гофф и Аррениус, развивший его идеи, утверждали, что температура не есть причина реакции, температура - причина изменения скорости реакции:

(Аррениус в 1889 г.), (1.3)

где А - предэкспоненциальный множитель;

Е - энергия активации;

R - газовая постоянная;

Т - температура.

С 1890 г. величина энергии активации стала универсальной мерой реакционной способности превращающихся веществ. Таким образом, в период 1860-1910 гг. была создана формальная кинетика. Ясность и немногочисленность основных постулатов отличают химическую кинетику периода Вант-Гоффа и Аррениуса.

В последующем исходная цельность утрачивается, появляется много «кинетик»: кинетика газофазных и жидкофазных реакций, каталитическая, ферментативная, топохимическая и т. д.

Однако для химика и до настоящего времени остаются наиболее важными две концепции:

Закон действующих масс как закон простой реакции.

Сложность механизма химической реакции.

Основные понятия химической кинетики

Кинетика гомогенных химических реакций

Скорость химической реакции есть изменение числа молей реагентов в результате химического взаимодействия в единицу времени в единице объема (для гомогенных реакций) или на единице поверхности (для гетерогенных процессов) :

где W - скорость химической реакции, ;

V - объем, м3;

N - число молей;

t - время, с.Согласно уравнению (1.4), вводя концентрацию, получим

где С - концентрация, моль/м3,

Для реакций, идущих при постоянном объеме, второе слагаемое в уравнении (1.6) равно нулю и, следовательно,

Одним из основных законов химической кинетики, определяющим количественные закономерности скоростей элементарных реакций, является закон действующих масс.

Согласно кинетическому закону действующих масс скорость элементарной реакции при заданной температуре пропорциональна концентрациям реагирующих веществ в степенях, показывающих число вступающих во взаимодействие частиц :

где W - скорость химической реакции;

Константа скорости;

Концентрации исходных веществ, ;

Соответствующие стехиометрические коэффициенты в брутто-уравнении химической реакции.

Уравнение (1.8) справедливо для элементарных реакций. Для сложных реакций показатели степени в уравнении (1.8) называются порядками реакции и могут принимать не только целочисленные значения.

Константа скорости химической реакции является функцией температуры, и зависимость от температуры выражается законом Аррениуса:

где - предэкспоненциальный множитель;

E - энергия активации, ;

Т - температура, К;

R - газовая постоянная, .

Рассмотрим гомогенную реакцию

где a, b, c, d - стехиометрические коэффициенты.

Согласно закону действующих масс (1.8) скорость этой реакции запишется следующим образом:

Между скоростями реакции по отдельным компонентам (обозначим их WA, WB, WC, WD) и общей скоростью реакции W существует зависимость

Отсюда вытекают следующие выражения:

Чтобы применить закон действующих масс к сложной химической реакции, необходимо представить ее в виде элементарных стадий и применить этот закон к каждой стадии отдельно.

Кинетические уравнения

Кинетические уравнения связывают скорость реакции с параметрами, от которых она зависит. Наиболее важными из этих параметров являются концентрация, температура, давление, активность катализатора.

Для реакторов периодического действия, в которых концентрации реагирующих веществ в каждой точке реакционного объема в ходе реакции непрерывно изменяются во времени, скорость химической реакции есть количество молей данного вещества, реагирующее в единицу времени в единице объема:

или на единицу поверхности, для гетерогенных каталитических реакций

где Wi - скорость химической реакции, моль/м3с;

Ni - текущее количество i-го компонента реакционной смеси, моль;

V - объем реакционной смеси или слоя катализатора (объем реактора), м3;

S - поверхность катализатора, м2;

0 - удельная поверхность катализатора, м2/м3;

t - время, с.

Для реакторов непрерывного действия полного вытеснения, в которых при установившемся режиме концентрация вещества непрерывно изменяется по длине аппарата, скорость химической реакции есть количество молей проходящего через реактор в единицу времени вещества, реагирующего в единице объема :

где ni - мольный расход i-го компонента реакционной смеси, моль/с;

Скорость подачи реакционной смеси, м3/с;

Время контакта, с.

Для реактора непрерывного действия полного смешения, при установившемся режиме,

где ni0 - начальное количество i-го компонента реакционной смеси, моль/с.

На практике обычно измеряют скорость изменения мольной концентрации Сi (моль/м3; моль/л).

Для реактора периодического действия

Для реактора непрерывного действия

где - объемная скорость подачи реакционной смеси, м3/с.

Если реакция не сопровождается изменением объема, то для реактора идеального вытеснения

Для реактора непрерывного перемешивания

где xi - степень превращения, ;

Среднее время пребывания, = V/, с.

Методы решения кинетических уравнений

Кинетические модели - это системы обыкновенных дифференциальных уравнений, решение которых - функции концентраций реагирующих веществ от независимого аргумента времени .

Для решения дифференциальных уравнений - интегрирования - применяются:

· табличный метод (с использованием таблиц интегралов) - применяется для простейших дифференциальных уравнений;

· аналитические методы применяются для решения дифференциальных уравнений первого порядка;

· численные методы, наиболее универсальные, позволяющие решать системы дифференциальных уравнений любой сложности, являются основой компьютерных методов анализа химико-технологических процессов .

Численные методы

Простейшим численным методом решения обыкновенных дифференциальных уравнений является метод Эйлера . В основе этого метода лежит аппроксимация производной при малых изменениях аргумента.

Например, уравнение скорости химической реакции описывается уравнением

где СА - концентрация вещества, моль / л;

Время, с.

При малых t можно приближённо принять, что

величину называют шагом интегрирования. Решая уравнение (1.23), получим общую формулу Эйлера

где - правая часть дифференциального уравнения (например,

Задав начальные условия: при t = 0 С = С0, величину шага интегрирования h, а также параметры уравнения, с помощью формулы (1.24) можно провести пошаговый расчёт и получить решение данного уравнения (рис. 1.1).

Рис. 1.1. Графическая иллюстрация метода Эйлера

рганизуя циклические вычисления по уравнению (1.24), получим для кинетической модели изменение концентраций реагирующих веществ от времени.

Величина шага интегрирования выбирается, исходя из достижения минимального времени счёта и наименьшей ошибки вычислений.

Общие представления одношаговых методов решения обыкновенных дифференциальных уравнений

Пусть имеется дифференциальное уравнение

удовлетворяющее начальному условию

Требуется найти решение задачи (1.25), (1.26) на отрезке . Выполним разбиение отрезка точками

Этот набор точек называют сеткой, а точки xi (i = i, n) - узлами сетки.

Одношаговые численные методы дают приближения yn к значениям точного решения y(xn) в каждом узле сетки xn на основе известного приближения yn-1 к решению в предыдущем узле xn-1. В общем виде их можно представить так :

Для явных одношаговых методов функция F не зависит от yn+1.

Обозначая

явные одношаговые методы будем записывать также в виде

Явные методы типа Рунге-Кутта

Идея данного метода основана на вычислении приближённого решения y1 в узле x0 + h в виде линейной комбинации с постоянными коэффициентами :

Числа выбираются так, чтобы разложение выражения (1.29) по степеням h совпадало с разложением в ряд Тейлора:

Это эквивалентно следующему. Если ввести вспомогательную функцию

то ее разложение по степеням h должно начинаться с максимально возможной степени:

Если можно определить эти постоянные так, чтобы разложение имело вид (1.32), то говорят, что формула (1.29) с выбранными коэффициентами имеет порядок точности s.

Величина

называется погрешностью метода на шаге, или локальной погрешностью метода, а первое слагаемое в выражении (1.32)

называется главным членом локальной погрешности метода.

Доказано, что если q = 1, 2, 3, 4, то всегда можно выбрать коэффициенты так, чтобы получить метод типа Рунге-Кутта порядка точности q. При q = 5 невозможно построить метод типа Рунге-Кутта (1.29) пятого порядка точности, необходимо брать в комбинации (1.29) более пяти членов.

Исследование кинетики гомогенных химических реакций

Исследование кинетических закономерностей протекания химической реакции методом математического моделирования заключается в определении изменения концентраций реагирующих веществ во времени при заданной температуре.

Пусть протекают химические реакции

На основании закона действующих масс запишем уравнения скоростей химических реакций и составим кинетическую модель:

где СА, СВ, СС, СD - концентрации веществ, моль/л;

ki - константа скорости i-й химической реакции первого порядка, с-1; (для реакций второго порядка размерность константы; для реакций третьего порядка размерность константы);

Wi - скорость i-й химической реакции, моль/лс; t - время реакции, с.

Размещено на http://www.allbest.ru/

Рис. 1.2. Блок-схема расчета кинетики гомогенной химической реакции методом Эйлера

Систему обыкновенных дифференциальных уравнений первого порядка (1.35) можно решить с использованием численного метода Эйлера, алгоритм которого записывается по уравнению (1.24).

Блок-схема расчета кинетики гомогенной химической реакции методом Эйлера приведена на рис. 1.2.

Примеры программ расчета кинетики гомогенных химических реакций приведены в Приложении А. Результаты исследования на математической модели (1.35) влияния температуры на степень превращения исходного реагента и на концентрацию веществ представлены на рис. 1.3, 1.4.

Полученные результаты позволяют сделать вывод об оптимальном времени проведения процесса с целью получения целевого продукта. Математическая модель (1.35) также позволяет исследовать влияние состава сырья на выход продуктов реакции.

Необходимо учитывать, что скорость химической реакции зависит от температуры, поэтому, чтобы использовать кинетическую модель (1.35) для исследования процесса при различных температурах, необходимо ввести зависимость константы скорости химической реакции от температуры по уравнению Аррениуса (1.9).

Алгоритм метода Рунге-Кутта четвертого порядка можно записать следующим образом:

где ai - коэффициенты Рунге-Кутта, которые рассчитываются по следующим формулам:

Литература

кинетика химический гомогенный

1. Панченков Г. М., Лебедев В. П. Химическая кинетика и катализ. - М.: Химия, 1985. - 589 с.

2. Яблонский Г. С., Быков В. И., Горбань А. И. Кинетические модели каталитических реакций. - Новосибирск: Наука, 1983. - 254 с.

3. Кафаров В. В. Методы кибернетики в химии и химической технологии. - М.: Химия, 1988. - 489 с.

4. Кравцов А. В., Новиков А. А., Коваль П. И. Методы анализа химико- технологических процессов. - Томск: изд-во ТПУ, 1994. - 76 с.

5. Кафаров В. В., Глебов М. В. Математическое моделирование основных процессов химических производств. - М.: Высш. шк., 1991. - 400 с.

6. Мойзес О. Е., Коваль П. И., Баженов Д. А., Кузьменко Е. А. Информатика: учеб. пособие. В 2-х ч. - Томск, 1999. - 150 с.

7. Турчак Л. И. Основы численных методов. - М.: Наука, 1987. - 320 с.

8. Офицеров Д. В., Старых В. А. Программирование в интегрированной среде Турбо-Паскаль. - Минск: Беларусь, 1992. - 240 с.

9. Бесков В. С., Флор К. В. Моделирование каталитических процессов и реакторов. - М.: Химия, 1991. - 252 с.

10. Руд Р., Праустниц Дж., Шервуд Т. Свойства газов и жидкостей

/ под ред. Б. И. Соколова. - Л.: Химия, 1982. - 591 с.

11. Танатаров М. А. и др. Технологические расчеты установок переработки нефти. - М.: Химия, 1987. - 350 с.

12. Жоров Ю. М. Термодинамика химических процессов. - М.: Химия, 1985

13. Расчеты основных процессов и аппаратов нефтепереработки: справочник / под ред. Е. Н. Судакова. - М.: Химия, 1979. - 568 с.

14. Кафаров В. В. Разделение многокомпонентных систем в химической технологии. Методы расчета. - М.: Московский химико-технологический институт, 1987. - 84 с.

Размещено на Allbest.ru

Подобные документы

    Методы построения кинетических моделей гомогенных химических реакций. Исследование влияния температуры на выход продуктов и степень превращения. Рекомендации по условиям проведения реакций с целью получения максимального выхода целевых продуктов.

    лабораторная работа , добавлен 19.12.2016

    Основные понятия и законы химической кинетики. Кинетическая классификация простых гомогенных химических реакций. Способы определения порядка реакции. Влияние температуры на скорость химических реакций. Сущность процесса катализа, сферы его использования.

    реферат , добавлен 16.11.2009

    Понятие и расчет скорости химических реакций, ее научное и практическое значение и применение. Формулировка закона действующих масс. Факторы, влияющие на скорость химических реакций. Примеры реакций, протекающих в гомогенных и гетерогенных системах.

    презентация , добавлен 30.04.2012

    Определение содержания химической кинетики и понятие скорости реакции. Доказательство закона действующих масс и анализ факторов, влияющих на скорость химических реакций. Измерение общей энергии активации гомогенных и гетерогенных реакций, их обратимость.

    презентация , добавлен 11.08.2013

    Рассмотрение превращения энергии (выделение, поглощение), тепловых эффектов, скорости протекания химических гомогенных и гетерогенных реакций. Определение зависимости скорости взаимодействия веществ (молекул, ионов) от их концентрации и температуры.

    реферат , добавлен 27.02.2010

    Ознакомление с понятием и предметом химической кинетики. Рассмотрение условий химической реакции. Определение скорости реакции как изменения концентрации реагирующих веществ в единицу времени. Изучение общего влияния природы веществ и температуры.

    презентация , добавлен 25.10.2014

    Термодинамика и кинетика сложных химических реакций. Фазовые превращения в двухкомпонентной системе "BaO-TiO2". Классификация химических реакций. Диаграммы состояния двухкомпонентных равновесных систем. Методы Вант Гоффа и подбора кинетического уравнения.

    курсовая работа , добавлен 19.05.2014

    Зависимость химической реакции от концентрации реагирующих веществ при постоянной температуре. Скорость химических реакций в гетерогенных системах. Влияние концентрации исходных веществ и продуктов реакции на химическое равновесие в гомогенной системе.

    контрольная работа , добавлен 04.04.2009

    Общее понятие о химической реакции, ее сущность, признаки и условия проведения. Структура химических уравнений, их особенности и отличия от математических уравнений. Классификация и виды химических реакций: соединения, разложения, обмена, замещения.

    реферат , добавлен 25.07.2010

    Основные понятия химической кинетики. Сущность закона действующих масс. Зависимость скорости химической реакции от концентрации веществ и температуры. Энергия активации, теория активных (эффективных) столкновений. Приближенное правило Вант-Гоффа.