Физическая величина мера взаимодействия тел. Сила – векторная физическая величина, характеризующая взаимодействие, являющаяся его мерой и равная произведению массы тела m на его ускорение а

Толкните стену. Прямо сейчас подойдите и сильно толкните стену. Что-нибудь произошло? Вряд ли. Тогда толкните стену не просто сильно, а изо всех сил. На этот раз произошло? Со стеной - вряд ли, а вот вы, скорее всего, отлетели от стены на некоторое расстояние. Как же так?

Ведь это вы толкали стену, а получилось, что это стена толкнула вас. Еще пример - бильярд. Когда мы бьем кием по шару и попадаем в другой шар, то второй шар начинает движение, но и первый при этом отлетает в обратную сторону или же вбок. Третий пример - это молоток. Когда молотком бьют по гвоздю, то не только гвоздь забивается в стену, но и молоток отскакивает обратно и может дать по лбу незадачливому умельцу. Во всех этих примерах мы действовали одним телом на другое, но при этом оказалось, что и другое тело тоже действовало на первое. В физике действие двух тел друг на друга называется взаимодействием.

Взаимодействие тел в физике

При взаимодействии двух тел всегда результат ощущают на себе оба тела. То есть, говоря простым языком, всегда при воздействии на что-то следует отдача. Наверное, все драчливые мальчишки знают, что во время драки страдает не только лицо противника, но и собственные кулаки можно здорово поразбивать. То есть, пока один хулиган атакует кулаком нос другого хулигана, нос в это время атакует кулак в ответ. Однако, нос при этом страдает гораздо больше. Ну, с носом все понятно - он мягче и потому сильнее повреждается, а вот почему шар при ударе кием отлетает намного сильнее, чей кий в это же время? То есть, не отлетает же кий, и мы вместе с ним, на несколько метров от стола? А это объясняется тем, что тела бывают более инертны и менее инертны.

Виды взаимодействия тел и мера взаимодействия

Про тело, которое при взаимодействии изменяет свою скорость медленнее, говорят, что оно более инертно и имеет большую массу. А тело, которое быстрее изменяет свою скорость, мы называем менее инертным, и говорим, что оно имеет меньшую массу. Именно поэтому мы не отлетаем от стола при ударе кием по шару и, наоборот, отлетаем от стены, при попытке толкнуть стену и, соответственно весь дом, к которому она приделана. Масса нас с кием намного больше массы бильярдного шара, но при этом намного меньше массы дома, даже если мы взгромоздим себе на плечи жену, трех детей, связку баранок и кошку.

Знакомство с взаимодействием тел рассматривается в курсе физики 7 класса.

Мерой взаимодействия тел является сила. Существует 4 не сводящихся друг к другу вида взаимодействий: гравитационное, электромагнитное, сильное и слабое. Но эту тему подробно разбирают в курсе 10 класса.

Сила - это мера механического взаимодействия материальных тел между собой. Взаимодействие характеризуется величиной и на­правлением, т.е. сила есть величина векторная, характеризующа­яся точкой приложения (А), направлением (линией действия), вели­чиной (модулем) (рис. 1.1). Силу измеряют в ньютонах. Рис.1.1

Силы, действующие на тело (или систему тел), делятся на внеш­ние и внутренние. Внешние силы бывают активные и реактивные. Активные силы вызывают переме­щение тела, реактивные стремят­ся противодействовать перемещению тела под действием внешних сил.

Аксиомы статики. В результате обобщения человеческого опыта были установле­ны общие закономерности механического движения, выраженные в виде законов и теорем. Все теоремы и уравнения статики выводятся из нескольких исходных положений. Эти положения называют акси­омами статики.

Тела, ограничивающие перемещение других тел, называют свя­зями.

Силы, действующие от связей и препятствующие перемещению, называют реакциями связей.

Реакция связи всегда направлена с той стороны, куда нельзя перемещаться.

Все связи можно разделить на несколько типов.

Связь – гладкая опора (без трения)


Реакция опоры приложена в точке опоры и всегда направлена перпендикулярно опоре (рис. 1.2).

Гибкая связь (нить, веревка, трос, цепь.) Груз подвешен на двух нитях

Реакция нити направлена вдоль нити от тела, при этом нить может быть только растянута (рис. 1.3).

Рис.1.3 Рис. 1.4

Жёсткий стержень. На схемах стержни изображают толстой сплошной линией (рис. 1.4). Стержень может быть сжат или растянут. Ре­акция стержня направлена вдоль стержня.

Шарнирная опора. Шарнир допускает поворот вокруг точки закрепления. Различают два вида шарниров.

Подвижный шарнир(рис.1.5). Реакция подвижного шарнира направлена перпендикулярно опорной поверхности, т.к не допускается только перемещение поперек опорной поверхности. Реакция подвижного шарнира направлена перпендикулярно опорной поверхности, т.к не допускается только перемещение поперек опорной поверхности.

Рис. 1.5 Рис. 1.6

Неподвижный шарнир. Реакция такой опоры проходит через ось шарнира, но известно по направлению. Ее принято изображать в виде двух составляющих: горизонтальной и вертикальной (Rx ; Ry) (рис. 1.6)

Защемление или “жесткая заделка” (рис. 1.7)

Реактивную силу принято представлять в виде двух составляющих вдоль осей координат R =Rx + Ry

Рис. 1.7 Рис.1.8

Связь в виде шероховатой плоскости

R n – нормальная реакция;

F тр - сила трения, касательная реакция.

Полная реакция равна геометрической сумме: (рис. 1.8)

Связь в виде ребра двухгранного угла или точечной опорой .

Реакция направлена перпендикулярно поверхности тела опоры (рис.1.9)


Задание. Ответить на вопросы.

1. Какие силы системы можно убрать, не нарушая механического состояния тела (рис. 1.10)? Рисунок выполнить.

2. Какая из приведенных систем сил уравновешена на рис.1.11? Рисунок выполнить.

3. Укажите возможное направление реакций в опорах на рис.1.12. Рисунки выполнить.

4. Груз подвешен на стержнях и канатах и находится в равновесии (рис. 1.12). Изобразить систему сил, действующих на шарнир А.

5. Как называются виды опор, представленные на рисунке 1.13 (рисунки не выполнять)?

Самостоятельная работа №2

Тема 1.2 Плоская система сходящихся сил / 3,стр.12-27/

Знать геометрический и аналитический способы определения равнодействующей системы сил, условия равновесия плоской системы сходящихся сил.

Уметь определять равнодействующую, решать задачи на равновесие в геометрической и аналитической формах.

Взаимодействие тел. Опыт показывает, что при сближении тел (или систем тел) характер их поведения меняется. Поскольку эти изменения носят взаимный характер, говорят, что тела взаимодействуют друг с другом . При разведении тел на очень большие расстояния (на бесконечность) все известные на сегодняшний день взаимодействия исчезают.

Галлилей первым дал правильный ответ на вопрос, какое движение характерно для свободных (т.е. не взаимодействующих тел). Вопреки существующему тогда мнению, что свободные тела “стремятся” к состоянию покоя (), он утверждал, что при отсутствии взаимодействия тела находятся в состоянии равномерного движения (
), включающего покой как частный случай.

Инерциальные системы отсчета. В рамках формального математического подхода, реализуемого в кинематике, утверждение Галилея выглядит бессмысленным, поскольку равномерное в одной системе отсчета движение может оказаться ускоренным в другой, которая “ничем не хуже” исходной. Наличие взаимодействия позволяет выделить особый класс систем отсчета, в которых свободные тела движутся без ускорения (в этих системах большинство законов природы имеют наиболее простую форму). Такие системы называются инерциальными.

Все инерциальные системы эквивалентны друг другу, в любой из них законы механики проявляются одинаково. Это свойство было также отмечено Галилеем в сформулированном им принципе относительности: никаким механическим опытом в замкнутой (т.е. не сообщающейся с внешним миром) системе отсчета невозможно установить покоится ли она или равномерно движется. Любая система отсчета, равномерно движущаяся относительно инерциальной тоже является инерциальной.

Между инерциальными и неинерциальными системами отсчета существует принципиальное отличие: находящийся в замкнутой системе наблюдатель способен установить факт движения с ускорением последних, “не выглядывая наружу”(напр. при разгоне самолета пассажиры ощущают, что их “вдавливает” в кресла). В дальнейшем будет показано, что в неинерциальных системах геометрия пространства перестает быть евклидовой.

Законы Ньютона как основа классической механики. Сформулированные И.Ньютоном три закона движения в принципе позволяют решить основную задачу механики , т.е. по известным начальному положению и скорости тела определить его положение и скорость в произвольный момент времени.

Первый закон Ньютона постулирует существование инерциальных систем отсчета.

Второй закон Ньютона утверждает, что в инерциальных системах ускорение тела пропорционально приложенной силе , физической величине, являющейся количественной мерой взаимодействия. Величину силы, характеризующей взаимодействие тел, можно определить, например, по деформации упругого тела, дополнительно введенного в систему так, что взаимодействие с ним полностью компенсирует исходное. Коэффициент пропорциональности между силой и ускорением называют массой тела :

(1) F= ma

Под действием одинаковых сил тела с большей массой приобретают меньшие ускорения. Массивные тела при взаимодействии в меньшей степени меняют свои скорости, “стремясь сохранить естественное движение по инерции”. Иногда говорят, что масса является мерой инертности тел (рис. 4_1).

К классическим свойствам массы следует отнести 1) ее положительность (тела приобретают ускорения в направлении приложенных сил), 2) аддитивность (масса тела равна сумме масс его частей), 3) независимость массы от характера движения (напр. от скорости).

Третий закон утверждает, что взаимодействия оба объекта испытывают действия сил, причем эти силы равны по величине и противоположно направлены.

Типы фундаментальных взаимодействий. Попытки классификации взаимодействий привели к идее выделения минимального набора фундаментальных взаимодействий , при помощи которых можно объяснить все наблюдаемые явления. По мере развития естествознания этот набор менялся. В ходе экспериментальных исследований периодически обнаруживались новые явления природы, не укладывающиеся в принятый фундаментальный набор, что приводило к его расширению (например, открытие структуры ядра потребовало введения ядерных сил). Теоретические же осмысление, вцелом стремящееся к единому, максимально экономному описанию наблюдаемого многообразия, неоднократно приволило к “великим объединениям” внешне совершенно несхожих явлений природы (ньютон понял,что падение яблока и движение планет вокруг Солнца являются результатами проявления гравитационных взаимодействий, Эйнштейн установил единую природу электрических и магнитных взаимодействий, Бутлеров опроверг утверждения о различной природе органических и неорганических веществ).

В настоящее время принят набор из четырех типов фундаментальных взаимодействий :гравитационные, электромагнитные, сильное и слабые ядерные . Все остальные, известные на сегодняшний день, могут быть сведены к суперпозиции перечисленных.

Гравитационные взаимодействия обусловлены наличием у тел массы и являются самыми слабыми из фундаментального набора. Они доминируют на расстояниях космических масштабов (в мега-мире).

Электромагнитные взаимодействия обусловлены специфическим свойством ряда элементарных частиц, называемым электрическим зарядом. Играют доминирующую роль в макро мире и микромире вплоть на расстояниях, превосходящих характерные размеры атомных ядер.

Ядерные взаимодействия играют доминирующую роль в ядерных процессах и проявляются лишь на расстояниях, сравнимых с размером ядра, где классическое описание заведомо неприменимо.

В настоящее время стали весьма популярны рассуждения о биополе , при помощи которого “объясняется” ряд не очень надежно установленных на эксперименте явлений природы, связанных с биологическими объектами. Серьезное отношение к понятию биополя зависит от того, какой конкретный смысл. Вкладывается в этот термин. Если понятие биополя используется для описания взаимодействий с участием биологических объектов, сводящихся к четырем фундаментальным, такой подход не вызывает принципиальных возражений, хотя введение нового понятия для описания “старых” явлений противоречит общепринятой в естествознании тенденции к минимизации теоретического описания. Если же под биополем понимается новый тип фундаментальных взаимодействий, проявляющийся на макроскопическом уровне (возможности существования которого априорно, очевидно, отрицать бессмысленно), то для столь далеко идущих выводов необходимы очень серьезные теоретические и экспериментальные обоснования, сделанные на языке и методами современного естествознания, которые до настоящего времени представлены не были.

Законы Ньютона и основная задача механики. Для решения основной задачи механики (определение положения тела в произвольный момент времени по известным начальному положению и скорости) достаточно найти ускорение тела как функцию времени a (t). Эту задачу решают законы Ньютона (1) при условии известных сил. В общем случае силы могут зависеть от времени, положения и скорости тела:

(2) F=F (r,v, t) ,

т.е. для нахождения ускорения тела необходимо знать его положение и скорость. Описанная ситуация в математике носит название дифференциального уравнения второго порядка :

(3)
,

(4)

В математике показывается, что задача (3-4) при наличии двух начальных условий (положение и скорость в начальный момент времени) всегда имеет решение и притом единственное . Т.о. основная задача механики в принципе всегда имеет решение, однако найти его часто бывает весьма трудно.

Детерминизм Лапласа . Немецкий математик Лаплас применил аналогичную теорему о существовании и единственности решения задачи типа (3-4) для системы из конечного числа уравнений для описания движения всех взаимодействующих друг с другом частиц реального мира и пришел к выводу о принципиальной возможности расчета положения всех тел в любой момент времени. Очевидно, что это означало возможность однозначного предсказанная будущего (хотя бы в принципе) и полную детерменированность (предопределенность) нашего мира. Сделанное утверждение, носящее скорее философский, а не естественно научный характер, получило название детерминизма Лапласа . При желании из него можно было сделать весьма далеко идущие философские и социальные выводы о невозможности влиять на предопределенный ход событий. Ошибочность этого учения состояла в том, что атомы или элементарные частицы (“материальные точки”, из которых составлены реальные тела) на самом деле не подчиняются классическому закону движения (3), верному лишь для макроскопических объектов (т.е. обладающих достаточно большими массами и размерами). Правильное с точки зрения сегодняшней физики описание движения во времени микроскопических объектов, какими являются составляющие макроскопические тела атомы и молекулы, дается уравнениями квантовой механики, , позволяющими определить только вероятность нахождения частицы в заданной точке, но принципиально не дающего возможности расчета траекторий движения для последующих моментов времени.

2014-05-28

Физические тела могут оказывать существенное влияние друг на друга, то есть взаимодействовать. Результатом этого взаимодействия может быть то, что тела деформируются, меняют скорость или направление своего движения. (Демонстрация столкновения двух тележек, движущихся в одном направлении с различными скоростями или навстречу друг другу.)

— Можете ли вы привести другие примеры взаимодействий?

— Количественной мерой взаимодействия тел является сила. Сила является векторной величиной, то есть характеризуется не только числом, но и направлением и точкой приложения (можно предложить учащимся открыть плотно закрытую дверь, прикладывая силу в разных точках). Силу измеряют динамометром в единицах ньютонах (Н), названных так в честь английского физика Исаака Ньютона, и обозначают буквой — F. (Учеников можно более подробно ознакомить с биографией ученого.) Различают силу тяжести, силу упругости, силу трения и другие силы электрического и магнитного происхождения.

Сила тяжести — это сила, с которой Земля притягивает к себе все тела. Благодаря этому притяжению все тела, поднятые над Землей и затем брошены, падают вниз; в реках течет вода; подпрыгнув вверх, мы опускаемся на Землю. Опытами установлено, что сила притяжения прямо пропорциональна массе тела. Если массы тел одинаковы, то одинаковы и силы тяжести, действующие на них. О теле большей массы мы говорим, что оно тяжелее. О телах, массы которых различны, мы говорим, что одно труднее, второе — легче.

Деформация — это изменение формы или объема тела. (Демонстрация упругой и пластической деформации.)

Сила упругости — это сила, возникающая при деформации тела и направлена в сторону, противоположную перемещению частиц тела при деформации. Если тело подвесить к пружине или нити, то растяжение пружины или нити прекратится тогда, когда значение сил упругости и тяжести будут одинаковы.

Электризация — это процесс, в результате которого тела приобретают свойства притягивать другие тела. Электрический заряд передается через трения или прикосновения. При электризации каждое тело приобретает своего заряда. Стеклянная палочка, потертая о шелк, приобретает положительный заряд (+), а шелк при этом заряжается отрицательно (-). Эбонит, потертый о шерсть, заряжается отрицательно (-), а сама шерсть при этом — положительно (+). Разноименно заряженные тела притягиваются, а одноименно заряженные — отталкиваются. (Демонстрация электризации трением и взаимодействия заряженных тел.) Следует ознакомить учащихся с применением электризации в быту и на производстве; с ее полезными свойствами и негативными последствиями. Можно напомнить им о том, что на уроках физики уже говорилось об электрических явлениях, в том числе о молнии. Также нужно напомнить о магнитных явлениях (демонстрация взаимодействия магнитов, магнитных стрелок и притяжения магнитами железных и стальных предметов).

В чем причина движения тел? Ответ на этот вопрос дает раздел механики, называемый динамикой.
Как можно изменить скорость тела, заставить его двигаться быстрее или медленнее? Только при взаимодействии с другими телами. При взаимодействии тела могут поменять не только скорость, но и направление движения и деформироваться, изменив при этом форму и объем. В динамике для количественной меры взаимодействия тел друг на друга введена величина названная силой. А изменение скорости за время действия силы характеризуется ускорением. Сила есть причина ускорения.

Понятие силы

Сила – это векторная физическая величина, характеризующая действие одного тела на другое, проявляющееся в деформации тела или изменении его движения относительно других тел.

Сила обозначается буквой F. За единицу измерения в системе СИ принят Ньютон (Н), который равен силе, под действием которой тело массой в один килограмм получает ускорение в один метр на секунду в квадрате. Сила F полностью определена, если заданы ее модуль, направление в пространстве и точка приложения.
Для измерения сил служит специальный прибор называемый динамометром.

Сколько же сил в природе?

Силы можно разделить на два типа:

  1. Действуют при непосредственном взаимодействии, контактные (упругие силы, силы трения);
  2. Действуют на расстоянии, дальнодействующие (сила притяжения, сила тяжести, магнитные, электрические).

При непосредственном взаимодействии, например выстрел из игрушечного пистолета, тела испытывают изменение формы и объема по сравнению с первоначальным состоянием, то есть деформацию сжатия, растяжения, изгиба. Сжата пружина пистолета перед выстрелом, деформируется пулька при ударе о пружину. В данном случае силы действуют в момент деформации и исчезают вместе с ней. Силы такие называют упругими. Силы трения возникают при непосредственном взаимодействии тел, когда они катятся, скользят друг относительно друга.

Примером сил, действующих на расстоянии, может служить камень, брошенный вверх, вследствие притяжения он упадет на Землю, приливы и отливы, возникающие на океанских побережьях. С увеличением расстояния такие силы убывают.
В зависимости от физической природы взаимодействия силы можно разделить на четыре группы:

  • слабые;
  • сильные;
  • гравитационные;
  • электромагнитные.

Со всеми типами этих сил мы встречаемся в природе.
Гравитационные или силы всемирного тяготения являются самыми универсальными, все, что имеет массу способно испытывать эти взаимодействия. Они вездесущи и всепроникающие, но очень слабы, поэтому мы их не замечаем, особенно на огромных расстояниях. Гравитационные силы дальнодействующие, связывают все тела во Вселенной.

Электромагнитные взаимодействия возникают между заряженными телами или частицами, посредством действия электромагнитного поля. Электромагнитные силы позволяют нам видеть предметы, так как свет это одна из форм электромагнитных взаимодействий.

Слабые и сильные взаимодействия стали известны благодаря изучению строения атома и атомного ядра. Сильные взаимодействия возникают между частицами в ядрах. Слабые характеризуют взаимные превращения друг в друга элементарных частиц, действуют при реакциях термоядерного синтеза и радиоактивных распадах ядер.

Если на тело действует несколько сил?

При действии нескольких сил на тело одновременно заменяют это действие одной силой, равной их геометрической сумме. Полученную в этом случае силу называют равнодействующей. Она сообщает телу то же ускорение, что и одновременно действующие на тело силы. Это так называемый принцип суперпозиции сил.